View source: R/estimate_infections.R
estimate_infections | R Documentation |
Uses a non-parametric approach to reconstruct cases by date of infection
from reported cases. It uses either a generative Rt model or non-parametric
back calculation to estimate underlying latent infections and then maps
these infections to observed cases via uncertain reporting delays and a
flexible observation model. See the examples and function arguments for the
details of all options. The default settings may not be sufficient for your
use case so the number of warmup samples (stan_args = list(warmup)
) may
need to be increased as may the overall number of samples. Follow the links
provided by any warnings messages to diagnose issues with the MCMC fit. It
is recommended to explore several of the Rt estimation approaches supported
as not all of them may be suited to users own use cases. See
here
for an example of using estimate_infections
within the epinow
wrapper to
estimate Rt for Covid-19 in a country from the ECDC data source.
estimate_infections(
data,
generation_time = gt_opts(),
delays = delay_opts(),
truncation = trunc_opts(),
rt = rt_opts(),
backcalc = backcalc_opts(),
gp = gp_opts(),
obs = obs_opts(),
forecast = forecast_opts(),
stan = stan_opts(),
horizon,
CrIs = c(0.2, 0.5, 0.9),
filter_leading_zeros = TRUE,
zero_threshold = Inf,
weigh_delay_priors = TRUE,
id = "estimate_infections",
verbose = interactive(),
reported_cases
)
A list of output including: posterior samples, summarised posterior samples, data used to fit the model, and the fit object itself.
epinow()
regional_epinow()
forecast_infections()
estimate_truncation()
# set number of cores to use
old_opts <- options()
options(mc.cores = ifelse(interactive(), 4, 1))
# get example case counts
reported_cases <- example_confirmed[1:60]
# set an example generation time. In practice this should use an estimate
# from the literature or be estimated from data
generation_time <- Gamma(
shape = Normal(1.3, 0.3),
rate = Normal(0.37, 0.09),
max = 14
)
# set an example incubation period. In practice this should use an estimate
# from the literature or be estimated from data
incubation_period <- LogNormal(
meanlog = Normal(1.6, 0.06),
sdlog = Normal(0.4, 0.07),
max = 14
)
# set an example reporting delay. In practice this should use an estimate
# from the literature or be estimated from data
reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10)
# for more examples, see the "estimate_infections examples" vignette
def <- estimate_infections(reported_cases,
generation_time = gt_opts(generation_time),
delays = delay_opts(incubation_period + reporting_delay),
rt = rt_opts(prior = LogNormal(mean = 2, sd = 0.1))
)
# real time estimates
summary(def)
# summary plot
plot(def)
options(old_opts)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.