# download all existing forecasts to check how many forecasts there
# already exist for each location
get_existing_forecasts <- function(
regular_sheet = "1nOy3BfHoIKCHD4dfOtJaz4QMxbuhmEvsWzsrSMx_grI",
rt_sheet = "1g4OBCcDGHn_li01R8xbZ4PFNKQmV-SHSXFlv2Qv79Ks"
) {
all_sub_reg <- googlesheets4::read_sheet(
ss = regular_sheet,
sheet = "predictions"
) %>%
dplyr::select(c(forecaster_id, submission_date,
forecast_time, location_name)) %>%
dplyr::filter(submission_date == suppressWarnings(max(submission_date)))
all_sub_rt <- googlesheets4::read_sheet(
ss = rt_sheet,
sheet = "predictions"
) %>%
dplyr::select(c(forecaster_id, submission_date,
forecast_time, region)) %>%
dplyr::rename(location_name = region) %>%
dplyr::filter(submission_date == suppressWarnings(max(submission_date)))
all_sub <- rbind(all_sub_reg, all_sub_rt)
if (nrow(all_sub) == 0) {
all_sub <- tibble::tibble(location = "none",
"number of forecasts" = "no submissions yet")
} else {
all_sub <- all_sub %>%
dplyr::group_by(forecaster_id, location_name) %>%
dplyr::filter(forecast_time == max(forecast_time)) %>%
unique() %>%
dplyr::arrange(location_name) %>%
dplyr::group_by(location_name) %>%
dplyr::mutate(n_forecaster = dplyr::n()) %>%
dplyr::select(location_name, n_forecaster) %>%
unique() %>%
dplyr::ungroup() %>%
dplyr::mutate(index = 1:dplyr::n()) %>%
dplyr::relocate(index) %>%
dplyr::rename(location = location_name,
"number of forecasts" = n_forecaster)
}
return(all_sub)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.