derive_summary_records: Add New Records Within By Groups Using Aggregation Functions

Description Usage Arguments Details Value Author(s) Examples

View source: R/derive_summary_records.R

Description

It is not uncommon to have an analysis need whereby one needs to derive an analysis value (AVAL) from multiple records. The ADaM basic dataset structure variable DTYPE is available to indicate when a new derived records has been added to a dataset.

Usage

1
2
3
4
5
6
7
8
derive_summary_records(
  dataset,
  by_vars,
  filter = NULL,
  analysis_var,
  summary_fun,
  set_values_to = NULL
)

Arguments

dataset

A data frame.

by_vars

Variables to consider for generation of groupwise summary records. Providing the names of variables in vars() will create a groupwise summary and generate summary records for the specified groups.

filter

Filter condition as logical expression to apply during summary calculation. By default, filtering expressions are computed within by_vars as this will help when an aggregating, lagging, or ranking function is involved.

For example,

  • filter = (AVAL > mean(AVAL, na.rm = TRUE)) will filter all AVAL values greater than mean of AVAL with in by_vars.

  • filter = (dplyr::n() > 2) will filter n count of by_vars greater than 2.

analysis_var

Analysis variable.

summary_fun

Function that takes as an input the analysis_var and performs the calculation. This can include built-in functions as well as user defined functions, for example mean or function(x) mean(x, na.rm = TRUE).

set_values_to

A list of variable name-value pairs. Use this argument if you need to change the values of any newly derived records.

Set a list of variables to some specified value for the new observation(s)

  • LHS refer to a variable.

  • RHS refers to the values to set to the variable. This can be a string, a symbol, a numeric value or NA. (e.g. vars(PARAMCD = "TDOSE",PARCAT1 = "OVERALL")). More general expression are not allowed.

Details

When all records have same values within by_vars then this function will retain those common values in the newly derived records. Otherwise new value will be set to NA.

Value

A data frame with derived records appended to original dataset.

Author(s)

Vignesh Thanikachalam, Ondrej Slama

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
library(dplyr, warn.conflicts = FALSE)
adeg <- tibble::tribble(
  ~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
  "XYZ-1001", 1, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:50", 385, "",
  "XYZ-1001", 2, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:52", 399, "",
  "XYZ-1001", 3, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:56", 396, "",
  "XYZ-1001", 4, "QTcF Int. (msec)", "Visit 2",  "2016-03-08T09:45", 384, "Placebo",
  "XYZ-1001", 5, "QTcF Int. (msec)", "Visit 2",  "2016-03-08T09:48", 393, "Placebo",
  "XYZ-1001", 6, "QTcF Int. (msec)", "Visit 2",  "2016-03-08T09:51", 388, "Placebo",
  "XYZ-1001", 7, "QTcF Int. (msec)", "Visit 3",  "2016-03-22T10:45", 385, "Placebo",
  "XYZ-1001", 8, "QTcF Int. (msec)", "Visit 3",  "2016-03-22T10:48", 394, "Placebo",
  "XYZ-1001", 9, "QTcF Int. (msec)", "Visit 3",  "2016-03-22T10:51", 402, "Placebo",
  "XYZ-1002", 1, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 399, "",
  "XYZ-1002", 2, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 410, "",
  "XYZ-1002", 3, "QTcF Int. (msec)", "Baseline", "2016-02-22T08:01", 392, "",
  "XYZ-1002", 4, "QTcF Int. (msec)", "Visit 2",  "2016-03-06T09:50", 401, "Active 20mg",
  "XYZ-1002", 5, "QTcF Int. (msec)", "Visit 2",  "2016-03-06T09:53", 407, "Active 20mg",
  "XYZ-1002", 6, "QTcF Int. (msec)", "Visit 2",  "2016-03-06T09:56", 400, "Active 20mg",
  "XYZ-1002", 7, "QTcF Int. (msec)", "Visit 3",  "2016-03-24T10:50", 412, "Active 20mg",
  "XYZ-1002", 8, "QTcF Int. (msec)", "Visit 3",  "2016-03-24T10:53", 414, "Active 20mg",
  "XYZ-1002", 9, "QTcF Int. (msec)", "Visit 3",  "2016-03-24T10:56", 402, "Active 20mg",
)

# Summarize the average of the triplicate ECG interval values (AVAL)
derive_summary_records(
  adeg,
  by_vars = vars(USUBJID, PARAM, AVISIT),
  analysis_var = AVAL,
  summary_fun = function(x) mean(x, na.rm = TRUE),
  set_values_to = vars(DTYPE = "AVERAGE")
)

advs <- tibble::tribble(
  ~USUBJID, ~VSSEQ, ~PARAM, ~AVAL, ~VSSTRESU, ~VISIT, ~VSDTC,
  "XYZ-001-001", 1164, "Weight", 99,  "kg", "Screening", "2018-03-19",
  "XYZ-001-001", 1165, "Weight", 101, "kg", "Run-In",    "2018-03-26",
  "XYZ-001-001", 1166, "Weight", 100, "kg", "Baseline",  "2018-04-16",
  "XYZ-001-001", 1167, "Weight", 94,  "kg", "Week 24",   "2018-09-30",
  "XYZ-001-001", 1168, "Weight", 92,  "kg", "Week 48",   "2019-03-17",
  "XYZ-001-001", 1169, "Weight", 95,  "kg", "Week 52",   "2019-04-14",
)

# Set new values to any variable. Here, `DTYPE = MAXIMUM` refers to `max()` records
# and `DTYPE = AVERAGE` refers to `mean()` records.
derive_summary_records(
  advs,
  by_vars = vars(USUBJID, PARAM),
  analysis_var = AVAL,
  summary_fun = max,
  set_values_to = vars(DTYPE = "MAXIMUM")
) %>%
  derive_summary_records(
    by_vars = vars(USUBJID, PARAM),
    analysis_var = AVAL,
    summary_fun = mean,
    set_values_to = vars(DTYPE = "AVERAGE")
  )

# Sample ADEG dataset with triplicate record for only AVISIT = 'Baseline'
adeg <- tibble::tribble(
  ~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
  "XYZ-1001", 1, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:50", 385, "",
  "XYZ-1001", 2, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:52", 399, "",
  "XYZ-1001", 3, "QTcF Int. (msec)", "Baseline", "2016-02-24T07:56", 396, "",
  "XYZ-1001", 4, "QTcF Int. (msec)", "Visit 2",  "2016-03-08T09:48", 393, "Placebo",
  "XYZ-1001", 5, "QTcF Int. (msec)", "Visit 2",  "2016-03-08T09:51", 388, "Placebo",
  "XYZ-1001", 6, "QTcF Int. (msec)", "Visit 3",  "2016-03-22T10:48", 394, "Placebo",
  "XYZ-1001", 7, "QTcF Int. (msec)", "Visit 3",  "2016-03-22T10:51", 402, "Placebo",
  "XYZ-1002", 1, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 399, "",
  "XYZ-1002", 2, "QTcF Int. (msec)", "Baseline", "2016-02-22T07:58", 410, "",
  "XYZ-1002", 3, "QTcF Int. (msec)", "Baseline", "2016-02-22T08:01", 392, "",
  "XYZ-1002", 4, "QTcF Int. (msec)", "Visit 2",  "2016-03-06T09:53", 407, "Active 20mg",
  "XYZ-1002", 5, "QTcF Int. (msec)", "Visit 2",  "2016-03-06T09:56", 400, "Active 20mg",
  "XYZ-1002", 6, "QTcF Int. (msec)", "Visit 3",  "2016-03-24T10:53", 414, "Active 20mg",
  "XYZ-1002", 7, "QTcF Int. (msec)", "Visit 3",  "2016-03-24T10:56", 402, "Active 20mg",
)

# Compute the average of AVAL only if there are more than 2 records within the
# by group
derive_summary_records(
  adeg,
  by_vars = vars(USUBJID, PARAM, AVISIT),
  filter = dplyr::n() > 2,
  analysis_var = AVAL,
  summary_fun = function(x) mean(x, na.rm = TRUE),
  set_values_to = vars(DTYPE = "AVERAGE")
)

epijim/admiral documentation built on Feb. 13, 2022, 12:15 a.m.