classification_table_binary <- function(actual, predicted) {
# actual <- df_class_table$y_actual[[8]]
# predicted <- df_class_table$class[[8]]
actual <- actual %>%
unlist() %>%
as.numeric() %>%
as.matrix()
predicted <- predicted %>%
unlist() %>%
as.numeric() %>%
as.matrix()
total <- nrow(actual)
df <- tibble(actual, predicted) %>%
mutate(response_type = case_when(
actual == 1 & predicted == 1 ~ "true_positive",
actual == 1 & predicted == 0 ~ "false_negative",
actual == 0 & predicted == 1 ~ "false_positive",
actual == 0 & predicted == 0 ~ "true_negative"
)) %>%
group_by(response_type) %>%
summarize(count = n()) %>%
ungroup()
n_true <- df[str_detect(df$response_type, "true"),]$count %>% sum()
n_false <- df[str_detect(df$response_type, "false"),]$count %>% sum()
df <- df %>%
add_row(., response_type = "true", count = n_true) %>%
add_row(., response_type = "false", count = n_false) %>%
mutate(rate = count/total)
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.