View source: R/pairwise_adonis.R
pairwise.adonis | R Documentation |
This is a wrapper function for multilevel pairwise comparison using adonis() from package 'vegan'. The function returns adjusted p-values using p.adjust().
pairwise.adonis( x, factors, sim.function = "vegdist", sim.method = "bray", p.adjust.m = "bonferroni", reduce = NULL, perm = 999 )
x |
Data frame (the community table), or "dist" object (user-supplied distance matrix). |
factors |
Vector (a column or vector with the levels to be compared pairwise). |
sim.function |
Function used to calculate the similarity matrix, one of 'daisy' or 'vegdist' default is 'vegdist'. Ignored if x is a distance matrix. |
sim.method |
Similarity method from daisy or vegdist, default is 'bray'. Ignored if x is a distance matrix. |
p.adjust.m |
The p.value correction method, one of the methods supported by p.adjust(), default is 'bonferroni'. |
reduce |
String. Restrict comparison to pairs including these factors. If more than one factor, separate by pipes like reduce = 'setosa|versicolor' |
Table with the pairwise factors, Df, SumsOfSqs, F-values, R^2, p.value and adjusted p.value.
Pedro Martinez Arbizu & Sylvain Monteux
data(iris) pairwise.adonis(iris[,1:4],iris$Species) #similarity euclidean from vegdist and holm correction pairwise.adonis(x=iris[,1:4],factors=iris$Species,sim.function='vegdist', sim.method='euclidian',p.adjust.m='holm') #identical example using a distance matrix as an input dist_matrix=vegdist(iris[,1:4],method="euclidean") pairwise.adonis(dist_matrix,factors=iris$Species, p.adjust.m='holm') #similarity manhattan from daisy and bonferroni correction pairwise.adonis(x=iris[,1:4],factors=iris$Species,sim.function='daisy', sim.method='manhattan',p.adjust.m='bonferroni') #Restrict comparison to only some factors pairwise.adonis(iris[,1:4],iris$Species, reduce='setosa') #for more than one factor separate by pipes pairwise.adonis(iris[,1:4],iris$Species, reduce='setosa|versicolor')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.