Description Usage Arguments Details
View source: R/CreateArgFunctions.R
Create a parameter object for the function fitOutcomeModel
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | createFitOutcomeModelArgs(
modelType = "logistic",
stratified = FALSE,
useCovariates = FALSE,
inversePtWeighting = FALSE,
estimator = "ate",
maxWeight = 0,
interactionCovariateIds = c(),
excludeCovariateIds = c(),
includeCovariateIds = c(),
profileGrid = NULL,
profileBounds = c(log(0.1), log(10)),
prior = createPrior("laplace", useCrossValidation = TRUE),
control = createControl(cvType = "auto", seed = 1, startingVariance = 0.01, tolerance
= 2e-07, cvRepetitions = 10, noiseLevel = "quiet")
)
|
modelType |
The type of outcome model that will be used. Possible values are "logistic", "poisson", or "cox". |
stratified |
Should the regression be conditioned on the strata defined in the population object (e.g. by matching or stratifying on propensity scores)? |
useCovariates |
Whether to use the covariates in the cohortMethodData object in the outcome model. |
inversePtWeighting |
Use inverse probability of treatment weighting (IPTW)? See details. |
estimator |
for IPTW: the type of estimator. Options are estimator = "ate" for the average treatment effect, and estimator = "att"for the average treatment effect in the treated. |
maxWeight |
for IPTW: the maximum weight. Larger values will be truncated to this value. maxWeight = 0 means no truncation takes place. |
interactionCovariateIds |
An optional vector of covariate IDs to use to estimate interactions with the main treatment effect. |
excludeCovariateIds |
Exclude these covariates from the outcome model. |
includeCovariateIds |
Include only these covariates in the outcome model. |
profileGrid |
A one-dimensional grid of points on the log(relative risk) scale where the likelihood for coefficient of variables is sampled. See details. |
profileBounds |
The bounds (on the log relative risk scale) for the adaptive sampling of the likelihood function. See details. |
prior |
The prior used to fit the model. See Cyclops::createPrior() for details. |
control |
The control object used to control the cross-validation used to determine the hyperparameters of the prior (if applicable). See Cyclops::createControl() for details. |
Create an object defining the parameter values.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.