#' time_series_plots
#'
#' @description A fct function
#'
#' @return The return value, if any, from executing the function.
#'
#' @noRd
NULL
time_series_plot <- function(covid_data, outcome, pop_level){
validate(
need((nrow(covid_data) > 0 ), "Please make a selection.")
)
if (pop_level == "states") {
if (outcome == 1) {
rate <- plotly::ggplotly(ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = cases,
color = state.x),
size = 0.75) +
ggplot2::labs(
title = "Daily cumulative cases per 100,000 by selected state(s)",
color = "State"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Cumulative cases per 100,000") +
ggplot2::theme_minimal()
)
rate_log <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data
) +
ggplot2::geom_line(
ggplot2::aes(
y = cases_log,
x = date,
colour = state.x
),
size = 0.75
) +
ggplot2::labs(
title ="Daily log cumulative cases by selected state(s)",
color = "State"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Log cumulative cases") +
ggplot2::theme_minimal()
)
return(
list(
rate,
rate_log
)
)
}
if (outcome == 0) {
rate <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = deaths,
color = state.x
),
size = 0.75
) +
ggplot2::labs(
title = "Daily cumulative deaths per 100,000 by selected state(s)",
color = "State"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Cumulative deaths per 100,000") +
ggplot2::theme_minimal()
)
rate_log <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = deaths_log,
color = state.x),
size = 0.75
) +
ggplot2::labs(
title = "Daily log cumulative deaths by selected state(s)",
color = "State"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Log cumulative deaths") +
ggplot2::theme_minimal()
)
return(
list(
rate,
rate_log
)
)
}
}
if (pop_level == "counties") {
if (outcome == 1) {
rate <- plotly::ggplotly(ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = cases,
color = county.x),
size = 0.75
) +
ggplot2::labs(
title = "Daily cumulative cases per 100,000 by selected counties",
color = "County"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Cumulative cases per 100,000") +
ggplot2::theme_minimal()
)
rate_log <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = cases_log,
color = county.x
),
size = 0.75
) +
ggplot2::labs(
title = "Daily log cumulative cases by selected counties",
color = "County"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Log cumulative cases") +
ggplot2::theme_minimal()
)
return(
list(
rate,
rate_log
)
)
}
if (outcome == 0) {
rate <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = deaths,
color = county.x
),
size = 0.75
) +
ggplot2::labs(
title = "Daily cumulative deaths per 100,000 by selected counties",
color = "County"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Cumulative deaths per 100,000") +
ggplot2::theme_minimal()
)
rate_log <- plotly::ggplotly(
ggplot2::ggplot(
data = covid_data,
ggplot2::aes(x = date)
) +
ggplot2::geom_line(
ggplot2::aes(
y = deaths,
color = county.x
),
size = 0.75
) +
ggplot2::labs(
title = "Daily cumulative deaths per 100,000 by selected counties",
color = "County"
) +
ggplot2::xlab("Date") +
ggplot2::ylab("Cumulative deaths per 100,000") +
ggplot2::theme_minimal()
)
return(
list(
rate,
rate_log
)
)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.