reg_cdir: Cross-sectional dependence in regression

Description Usage Arguments Value See Also Examples

View source: R/Functions_Cross_Dep.R

Description

A routine like reg_cd() that partially optimises with respect δ and uses internal R routines to optimise with respect to β. This is particularly helpful in high dimensional settings.

Usage

1
reg_cdir(startdel, Y, X, Xm, ..., modclass = "lmcd", rvcov = FALSE)

Arguments

startdel

vector of starting values for δ

Y

outcome variable

X

matrix of covariates or design matrix

Xm

matrix of other control variables

...

other arguments to be passed to ncd_gen except arguments listed here and rval. Argument names must match exactly.

modclass

the class of model. See description above for classes supported.

rvcov

Logical. Should the variance-covariance matrix be returned?

Value

A list

See Also

ncd_gen, reg_cd

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
pars = c(1.0,0.5,0.8); pars2=pars = c(1.0,0.5,0.8,0.1,-0.1); N = 10; Tp = 16 
fnp<- function(x,y,k) {-(0.5*y^4 + (x-y)^4)^.25} # a dummy k
datpois = gdat_cd(pars=pars,N=N,Tp=Tp,seed=2,fun=fnp,eta = 200,modclass="poiscd") 
datpois2 = gdat_cd(pars=pars2,N=N,Tp=Tp,ncXm=2,seed=2,fun=fnp,eta = 200,modclass="poiscd")
k=1; lp=k*(k+1)/2; startp = rep(0.2,lp); # fun() is known
zg1=RpacSPD::reg_cdir(startdel=startp,Y=datpois$Y,X=datpois$X,Xm=NULL,Xi=datpois$X,Tid=datpois$tpID,
Pid=datpois$psID,fun=fnp,k=k,nt=lp,utid=c(2:Tp),modclass="poiscd",rvcov=TRUE) #return function value
BIC(zg1) #compute BIC of fitted model

k=4; lp=k*(k+1)/2; startp = rep(0,lp); # fun() is polynomial approximated
zg4=RpacSPD::reg_cdir(startdel=startp,Y=datpois2$Y,X=datpois2$X,Xm=datpois2[c("X1","X2")],
Xi=datpois2$X,Tid=datpois2$tpID,Pid=datpois2$psID,fun=polyexp,k=k,nt=lp,utid=c(2:Tp),
modclass="poiscd",rvcov=TRUE)
BIC(zg4) #compute BIC of fitted model

estsyawo/RpacSPD documentation built on Aug. 12, 2019, 5:22 a.m.