## code to prepare `jhu_covid19_data` dataset goes here
library(tidyverse)
library(lubridate)
library(plotly)
library(tidycovid19)
jhu_covid19_data<- download_jhu_csse_covid19_data() %>%
mutate(country = ifelse(country == "US", "USA", country))
covid19_cumulative_case <- jhu_covid19_data %>%
group_by(country) %>%
mutate(cum_cases = sum(confirmed)) %>%
select(-timestamp)
covid19_time <- jhu_covid19_data %>%
mutate(month = month(date),
day = day(date)) %>%
select(country,date, month, day, confirmed, deaths, recovered) %>%
pivot_longer(confirmed:recovered, names_to = "type", values_to = "number")
community_mobility_changes <- download_google_cmr_data() %>%
pivot_longer(retail_recreation:residential, names_to = "community_mobility", values_to = "value") %>%
left_join(jhu_covid19_data, by= "iso3c") %>%
select(country, community_mobility, value) %>%
group_by(country, community_mobility) %>%
summarise(mean = mean(value, na.rm = TRUE)) %>%
mutate(community_mobility = case_when(community_mobility =="grocery_pharmacy" ~ "Grocery & pharmacy",
community_mobility =="parks" ~ "Parks",
community_mobility =="residential" ~ "Residential",
community_mobility =="retail_recreation" ~ "Retail & Recreation",
community_mobility =="transit_stations" ~ "Transit stations",
community_mobility =="workplaces" ~ "Workplaces")) %>%
arrange(mean)
usethis::use_data(jhu_covid19_data, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.