Description Usage Arguments Value Author(s) References See Also Examples
Algorithm for Module Identification on single network
1  | moduleIdentificationGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 1000)
 | 
W | 
 edge score matrix of the network, n x n matrix  | 
z | 
 node score vector of the network, n-length vector  | 
x0 | 
 initial solution, n-length vector  | 
a | 
 parameter in elastic net the same as in   | 
lambda | 
 parameter in objective, coefficient of node score part  | 
maxiter | 
 maximal interation of whole procedure  | 
a list containing function objective vector and the solution
Dong Li, dxl466@cs.bham.ac.uk
AMOUNTAIN
1 2 3 4 5 6 7 8 9 10 11  | n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
## use default parameters here
x <- moduleIdentificationGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.