Description Usage Arguments Value Author(s) References See Also Examples
Algorithm for Module Identification on single network
1 | moduleIdentificationGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 1000)
|
W |
edge score matrix of the network, n x n matrix |
z |
node score vector of the network, n-length vector |
x0 |
initial solution, n-length vector |
a |
parameter in elastic net the same as in |
lambda |
parameter in objective, coefficient of node score part |
maxiter |
maximal interation of whole procedure |
a list containing function objective vector and the solution
Dong Li, dxl466@cs.bham.ac.uk
AMOUNTAIN
1 2 3 4 5 6 7 8 9 10 11 | n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
## use default parameters here
x <- moduleIdentificationGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.