evmetrics-ml: Multi-label evaluation metrics

Description Usage Arguments Details Value See Also Examples

Description

Several evaluation metrics designed for multi-label problems.

Usage

1
2
3
hamming_loss(true_labels, predicted_labels)

subset_accuracy(true_labels, predicted_labels)

Arguments

true_labels

Matrix of true labels, columns corresponding to labels and rows to instances.

predicted_labels

Matrix of predicted labels, columns corresponding to labels and rows to instances.

Details

Available metrics in this category

Value

Resulting value in the range [0, 1]

See Also

mldr_evaluate, mldr_to_labels

Other evaluation metrics: Averaged metrics, Ranking-based metrics

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
true_labels <- matrix(c(
1,1,1,
0,0,0,
1,0,0,
1,1,1,
0,0,0,
1,0,0
), ncol = 3, byrow = TRUE)
predicted_labels <- matrix(c(
1,1,1,
0,0,0,
1,0,0,
1,1,0,
1,0,0,
0,1,0
), ncol = 3, byrow = TRUE)

hamming_loss(true_labels, predicted_labels)
subset_accuracy(true_labels, predicted_labels)

fcharte/mldr documentation built on Dec. 16, 2019, 12:56 p.m.