library(openxlsx)
library(tidyverse)
library(emmeans)
library(lme4)
library(nlme)
library(plotly)
library(ggpubr)
library(rlist)
files = list.files('R')
for (file in files) {
source(paste0('R/', file))
}
pre_modeling <- function(input_data) {
analysis_data <- data_clean(input_data)
ready_final_model <- transform_diagnostics(analysis_data)
return(ready_final_model)
}
# quickplot <- function(ready_final_model)
# transformed_data = ready_final_model$transformed_data
# if (all(is.na(transformed_data$Baseline))) {
# var <- 'Response_Transformed'
# plots <- vizualization(transformed_data = transformed_data,
# power = power)
# } else{
# var <- 'Response_Transformed_bc'
# transformed_data <- transformed_data %>%
# mutate(Response_Transformed_bc = Response_Transformed - Baseline)
# debug(vizualization_cb)
# plots <- vizualization_cb(transformed_data = transformed_data,
# power = power)
# }
# final_modeling <- function(input_data, ready_final_model) {
# var = ready_final_model$var
# power = ready_final_model$box_cox
# transformed_data = ready_final_model$transformed_data
# transformed_data <-
# variance_test_basic(transformed_data = transformed_data,
# variable = var)
# transformed_data <-
# variance_check(transformed_data, variable = var)
# best_model <- cor_select(transformed_data, variable = var)
# time_order = unique(input_data$Time)
# final_model <- final_model(transformed_data = transformed_data,
# best = best_model, variable = var)
# toi = 'Week6' #Need to add a column in the app to save timeSelection
# contrast_list = generate_contrasts(toi = toi,
# data = transformed_data,
# time_order = time_order)
# contrasts_stats = contrast_padjust(model = final_model,
# contrast_list = contrast_list,
# data = transformed_data)
# #debug(final_output)
# print(power)
# output_tables = final_output(
# transformed_data = transformed_data,
# toi = toi,
# emmeans_obj = contrasts_stats$emmeans_obj,
# final_contrast = contrasts_stats$final_contrast,
# power = power,
# variable = var
# )
# return(output_tables)
# }
#input_data = read.csv('analysis_input_full.csv')[,-1]
input_data = read.csv('analysis_input_full_baseline.csv')
step_1 = pre_modeling(input_data)
quickplot(step_1) #Modify this function for an interactive shiny
last_step = final_modeling(input_data, step_1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.