#' staticmap_satscan
#'
#' This function generate the map of the output for [SaTScan](https://www.satscan.org/) or [rsatscan](https://cran.r-project.org/web/packages/rsatscan/vignettes/rsatscan.html).
#'
#' @param x is the dengue cases of the target locality.
#' @param rsatscan is the output of the space-time analysis with [rsatscan](https://cran.r-project.org/web/packages/rsatscan/vignettes/rsatscan.html) package.
#' @param satscan is a logical value for indicating if TRUE for output of [SaTScan](https://www.satscan.org/).
#' @param locality is the target locality.
#' @param cve_edo is the id of state.
#' @param path_shapeclust is the directory of the output of the space-time analysis with [SaTScan](https://www.satscan.org/). is the col.shp file.
#' @param path_gis is the directory of the output of the space-time analysis with [SaTScan](https://www.satscan.org/).is the gis.shp file.
#'
#' @return a ggplot map.
#' @export
#' @author Felipe Antonio Dzul Manzanilla \email{felipe.dzul.m@gmail.com}.
#' @examples
staticmap_satscan <- function(x,
rsatscan = NULL, satscan,
locality, cve_edo,
path_shapeclust = NULL,
path_gis = NULL){
# Step 1. extract the locality and agebs ####
loc <- rgeomex::extract_ageb(locality = locality,
cve_geo = cve_edo)
# Step 2. load the dengue cases ####
x <- x %>% sf::st_as_sf(coords = c("x", "y"),
crs = 4326)
x <- x[loc$locality, ]
if(satscan == FALSE){
# Step 3.1 load the gis file ####
shapeclust <- sf::st_as_sf(rsatscan$shapeclust)
# Step 3.2 load the gis file ####
gis <- rsatscan$gis %>%
dplyr::mutate(x = LOC_LONG,
y = LOC_LAT) %>%
sf::st_as_sf(coords = c("LOC_LONG", "LOC_LAT"),
crs = 4326)
} else {
# Step 3.1 load the gis file ####
shapeclust <- sf::st_read(path_shapeclust, quiet = TRUE)
# Step 3.2 load the gis file ####
gis <- sf::st_read(path_gis, quiet = TRUE) %>%
dplyr::mutate(x = sf::st_coordinates(geometry)[,1],
y = sf::st_coordinates(geometry)[,2])
}
p <- ggplot2::ggplot()+
ggplot2::geom_sf(data = loc$ageb,
fill = "gray92",
col = "white",
lwd = 0.01) +
ggplot2::geom_sf(data = x,
col = "gray40",
shape = 19,
size = .5) +
ggplot2::geom_sf(data = gis[shapeclust %>%
dplyr::filter(P_VALUE > 0.05),],
col = "white",
shape = 21,
fill = "#0499EAFF",
size = 3) +
ggplot2::geom_sf(data = shapeclust,
fill = NA,
col = "#0499EAFF",
lwd = 0.8) +
ggplot2::geom_sf(data = shapeclust %>%
dplyr::filter(P_VALUE < 0.05),
fill = NA,
col = "#D2372CFF",
lwd = .8)
if(satscan == FALSE){
p +
ggspatial::geom_spatial_path(data = gis[shapeclust %>%
dplyr::filter(P_VALUE > 0.05),],
ggplot2::aes(x = x,
y = y,
group = CLUSTER),
col = "black",
lwd = 0.5,
linetype = 1,
crs = 4326) +
ggplot2::geom_sf(data = gis[shapeclust %>%
dplyr::filter(P_VALUE < 0.05),],
col = "white",
shape = 21,
fill = "#D2372CFF",
size = 3) +
ggspatial::annotation_scale() +
cowplot::theme_map()
} else{
p +
ggplot2::geom_sf(data = gis[shapeclust %>%
dplyr::filter(P_VALUE < 0.05),],
col = "white",
shape = 21,
fill = "#D2372CFF",
size = 3) +
ggspatial::annotation_scale() +
cowplot::theme_map()
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.