Description Usage Arguments Examples
This will implement hierarchical bootstrapping as oppossed to stratified bootstrapping, which is the default
1 2 3 4 5 6 7 8 | boot_tmeans2(
formula = NULL,
data,
R = 500,
var.names = c("y", "trial"),
level = 0.95,
ncpus = 1
)
|
formula |
standard R formula, as in resp ~ trial |
data |
data frame |
R |
number of replicates |
var.names |
optional alternative to formula |
level |
probability level |
ncpus |
number of cpus for parallel resampling (not implemented yet) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
require(ggplot2)
## How does it compare to stratified resampling?
data(soyrs)
btm1 <- boot_tmeans(lrr ~ Trial_ID, data = soyrs)
btm2 <- boot_tmeans2(lrr ~ Trial_ID, data = soyrs)
dat <- data.frame(method = rep(c("boot","boot2"), each = nrow(btm2$dat)),
pos = rep(c(2,5), each = nrow(btm2$dat)),
ys = c(btm1$ys, btm2$dat$ys))
ggplot(data = dat) +
xlab("lrr") +
geom_point(aes(x = ys, y = pos, color = method)) +
geom_jitter(aes(x = ys, y = pos, color = method)) +
geom_density(aes(x = ys, color = method))
## The two methods give nearly identical answers
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.