Man pages for feng-li/movingknots
Efficient Bayesian multivariate surface regression

aT.x.DvecSigma4beta.inv<description>
convert.densParamsConvert the parameters corresponding to different...
delta.KGive the gradient for a diagnoal matrix (K) w.r.t. its...
delta.sumlogdetP<description>
delta.sumqlogdetKgradient for sum q_i log|K_i|
delta.vecPartiSigma4beta.invThis is the gradient for a single partition of beta's...
delta.xiGradient with respect to the knots locations.
deriv_priorA collection of gradient for common priors.
DGP.hwangA collection of DGPs for different models from Hwang's...
DGP.surfaceDGP Surface nested
FitDiagnosisDiagnosis if the spline model
FitDiagnosis.hwangDiagnosis if the spline model
glm_gradhessGLM
glm_logpostThe conditional and joint log posterior function
gradient_vecBGradient w.r.t. vecB
gradient_xigradient w.r.t. xi
gradient_xi_condiGradient w.r.t xi (conditional method)
grad_vech_SigmaThe gradient with respect to vech Sigma
grad.x.deriv_linkGradient derivative for x wrt link function
idx.b2betaMake indices from b to beta.
idx.beta2bConvert indices from beta to b
knots_check_boundaryBoundary check for the moving knots model It is easy to check...
knots_list2matConvert list of knots into a n-by-1 matrix.
knots_mat2listConvert the knots matrix into the knots list
knots_subsetsIdxFind the locations of subsets in the knots matrix
KStepNewtonMoveNewton move for spline models without dimession changes.
linear_gradhessGradient and Hessian matrix for the "marginal posterior" for...
linear_IWishartCalculate the posterior df and location matrix V from the...
linear_logpostThe conditional and joint log posterior function
linear_post4coefDirect sample the coefficients from normal distribution.
LogPredScoreLog predictive scores
log_priorlogarithm density for priors
make.knotsPriVarSet the prior variance of the knots.
Mat.delta.xi<description>
Mat.x.AT.k.I.x.K.x.delta.knots<description>
Mat.x.delta.vecSigma4beta.invCompute a matrix to pre-multiply the gradient for vec beta's...
Mat.x.DvecA.k.P_stp1Perform a dense matrix multiplying by Dev[vec[A K_qi,qi)
Mat.x.DvecA.k.P_stp2<description>
Mat.x.DvecA.k.XTX_stp1Perform a dense matrix multiplying by Dev[vec[A K_qi,qi)
Mat.x.DvecA.k.XTX_stp2<description>
Mat.x.DvecSigma.inv.k.XTX<description>
MCMC.trajectoryTrajectory MCMC for movingknots
MHPropMainThe Main MCMC algorithm for movingknots.
MHPropWithIWishartRandom walk Metropolis–Hastings algorithm for Sigma
MHPropWithKStepNewtonMetropolis–Hastings algorithm with K-step Newton method for...
MovingKnots_MCMCMCMC for movingknots.
Params.subsetsOrganize the subsets of the parameters by taking away the...
par.transformParameter transformation.
par.transform2Transform the parameters from the original scale to the new...
P.matrixGenerate the P matrices for the moving knots model
PredSurfaceSurface prediction for the movingknots.
RandomWalkMetropolisRandom walk Metropolis algorithm for movingknots.
SGLDStochastic MCMC using Stochastic gradient Langevin dynamics
Sigma4betaFunCalculate the variance for the prior of coefficients (beta)...
sub.hessianExtract the subset of hessian matrix.
surface.hwangSurface from Hwang paper.
Xmats.x.delta.xiPreform X_i multiply Dev xi
X.x.delta.xiPreform X multiply Dev xi
feng-li/movingknots documentation built on March 30, 2021, 11:58 a.m.