aT.x.DvecSigma4beta.inv | <description> |
convert.densParams | Convert the parameters corresponding to different... |
delta.K | Give the gradient for a diagnoal matrix (K) w.r.t. its... |
delta.sumlogdetP | <description> |
delta.sumqlogdetK | gradient for sum q_i log|K_i| |
delta.vecPartiSigma4beta.inv | This is the gradient for a single partition of beta's... |
delta.xi | Gradient with respect to the knots locations. |
deriv_prior | A collection of gradient for common priors. |
DGP.hwang | A collection of DGPs for different models from Hwang's... |
DGP.surface | DGP Surface nested |
FitDiagnosis | Diagnosis if the spline model |
FitDiagnosis.hwang | Diagnosis if the spline model |
glm_gradhess | GLM |
glm_logpost | The conditional and joint log posterior function |
gradient_vecB | Gradient w.r.t. vecB |
gradient_xi | gradient w.r.t. xi |
gradient_xi_condi | Gradient w.r.t xi (conditional method) |
grad_vech_Sigma | The gradient with respect to vech Sigma |
grad.x.deriv_link | Gradient derivative for x wrt link function |
idx.b2beta | Make indices from b to beta. |
idx.beta2b | Convert indices from beta to b |
knots_check_boundary | Boundary check for the moving knots model It is easy to check... |
knots_list2mat | Convert list of knots into a n-by-1 matrix. |
knots_mat2list | Convert the knots matrix into the knots list |
knots_subsetsIdx | Find the locations of subsets in the knots matrix |
KStepNewtonMove | Newton move for spline models without dimession changes. |
linear_gradhess | Gradient and Hessian matrix for the "marginal posterior" for... |
linear_IWishart | Calculate the posterior df and location matrix V from the... |
linear_logpost | The conditional and joint log posterior function |
linear_post4coef | Direct sample the coefficients from normal distribution. |
LogPredScore | Log predictive scores |
log_prior | logarithm density for priors |
make.knotsPriVar | Set the prior variance of the knots. |
Mat.delta.xi | <description> |
Mat.x.AT.k.I.x.K.x.delta.knots | <description> |
Mat.x.delta.vecSigma4beta.inv | Compute a matrix to pre-multiply the gradient for vec beta's... |
Mat.x.DvecA.k.P_stp1 | Perform a dense matrix multiplying by Dev[vec[A K_qi,qi) |
Mat.x.DvecA.k.P_stp2 | <description> |
Mat.x.DvecA.k.XTX_stp1 | Perform a dense matrix multiplying by Dev[vec[A K_qi,qi) |
Mat.x.DvecA.k.XTX_stp2 | <description> |
Mat.x.DvecSigma.inv.k.XTX | <description> |
MCMC.trajectory | Trajectory MCMC for movingknots |
MHPropMain | The Main MCMC algorithm for movingknots. |
MHPropWithIWishart | Random walk Metropolis–Hastings algorithm for Sigma |
MHPropWithKStepNewton | Metropolis–Hastings algorithm with K-step Newton method for... |
MovingKnots_MCMC | MCMC for movingknots. |
Params.subsets | Organize the subsets of the parameters by taking away the... |
par.transform | Parameter transformation. |
par.transform2 | Transform the parameters from the original scale to the new... |
P.matrix | Generate the P matrices for the moving knots model |
PredSurface | Surface prediction for the movingknots. |
RandomWalkMetropolis | Random walk Metropolis algorithm for movingknots. |
SGLD | Stochastic MCMC using Stochastic gradient Langevin dynamics |
Sigma4betaFun | Calculate the variance for the prior of coefficients (beta)... |
sub.hessian | Extract the subset of hessian matrix. |
surface.hwang | Surface from Hwang paper. |
Xmats.x.delta.xi | Preform X_i multiply Dev xi |
X.x.delta.xi | Preform X multiply Dev xi |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.