SGLD: Stochastic MCMC using Stochastic gradient Langevin dynamics

Description Usage Arguments Value Author(s) References

View source: R/algorithms__SGLD.R

Description

Fast version using stochastic gradient langevin dynamics.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
SGLD(
  param.cur,
  logpost.fun.name,
  Params,
  Y,
  x0,
  callParam,
  splineArgs,
  priorArgs,
  algArgs,
  Params_Transform
)

Arguments

param.cur

NA

logpost.fun.name

MA

Params

NA

Y

NA

x0

NA

callParam

NA

splineArgs

NA

priorArgs

NA

algArgs

NA

Params_Transform

NA

Params_Transfor

NA

Value

NA

Author(s)

Feng Li, Central University of Finance and Economics.

References

Ma, Chen, & Fox 2015 A Complete Recipe for Stochastic Gradient MCMC.


feng-li/movingknots documentation built on March 30, 2021, 11:58 a.m.