Description Usage Arguments Value Author(s) References See Also Examples
This function conducts an Empirical Orthogonal Teleconnection analysis (EOT) of a raster time series predictor using "remote" package especially designed to identify locations of enhanced potential and explain spatio-temporal variability within the same geographic field.
1 2 3  | 
rasterts | 
 Input raster time series as   | 
rastermask | 
 Either a   | 
nu | 
 Numeric. Defines the number of EOTs to return. Defaults to return the first 2 EOT modes.  | 
gapfill | 
 Character. Defines the algorithm to be used to interpolate pixels with incomplete temporal profiles
Accepts argument supported as method in function   | 
predictor | 
 Character. Defines the predictor components to export from those available in Value section of   | 
... | 
 Additional arguments to be passed through to function   | 
Object of class EOTstack-class containing the following components:
 eot  |  EOT temporal profiles corresponding to base point coordinates as xts object | 
|
 total_variance  | Numeric. Total explained variance of input raster time series by the entire set of computed EOTs | |
 explained_variance  | Numeric vector. Percentage of variance explained by each EOT mode with respect to the total variance of input raster time series | |
 r_predictor  |  RasterBrick. Correlation coefficients between the base point and each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "r_predictor") | 
|
 rsq_predictor  |  RasterBrick. Coefficient of determination between the base point and each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "rsq_predictor") | 
|
 rsq_sums_predictor  |  RasterBrick. Sums of correlation coefficients between the base point and each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "rsq_sums_predictor") | 
|
 int_predictor  |  RasterBrick. Intercept of the regression equation for each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "int_predictor") | 
|
 slp_predictor  |  RasterBrick. Slope of the regression equation for each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "slp_predictor") | 
|
 r_predictor  |  RasterBrick. The significance (p-value) of the the regression equation for each pixel of the predictor domain as RasterBrick object (only exported if predictor = "all" or predictor = "p_predictor") | 
|
Federico Filipponi
van den Dool H.M., Saha S., Johansson A. (2000). Empirical Orthogonal Teleconnections. Journal of Climate, Volume 13, Issue 8, pp. 1421-1435. http://journals.ametsoc.org/doi/abs/10.1175/1520-0442%282000%29013%3C1421%3AEOT%3E2.0.CO%3B2
eot, rtsa.eof, rtsa.gapfill, EOTstack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | ## Not run: 
## create raster time series using the 'pacificSST' data from 'remote' package
require(remote)
data(pacificSST)
pacificSST[which(getValues(pacificSST == 0))] <- NA # set NA values
# create rts object
rasterts <- rts(pacificSST, seq(as.Date('1982-01-15'), as.Date('2010-12-15'), 'months'))
## generate raster mask
rmk <- pacificSST[[1]] # create raster mask
values(rmk) <- 1 # set raster mask values
rmk[which(is.na(getValues(pacificSST[[1]])))] <- 0 # set raster mask values
## compute EOT
# compute the first 2 EOTs
eot_result <- rtsa.eot(rasterts=rasterts, rastermask=rmk, nu=2)
# compute the first 2 EOTs and export only the compontents 'r_predict' and 'p_predictor'
eot_rp <- rtsa.eot(rasterts=rasterts, rastermask="compute", nu=2, predictor=c("r_predictor", "p_predictor"))
# compute the first 2 EOTs using the index of agreement
eot_ioa <- rtsa.eot(rasterts=rasterts, rastermask=rmk, nu=2, type="ioa", predictor="all", verbose=T)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.