# packs
library(tidyverse)
library(gridExtra)
library(ggfortify)
library(ggcorrplot)
# wd
setwd('~/Área de Trabalho/audios Filipe/novos/') # Linux
# setwd('~/Desktop/audios Filipe/novos/') # Mac
# reading data
(bf0NA <- read_csv('./data/bf0NA.csv'))
# (bf <- read_csv('./data/bf.csv'))
# id:anyep_diff_w1 as_factor
bf0NA <- bf0NA %>%
mutate_at(vars(id:anyep_diff_w1), as_factor)
# glimpse(bf0NA)
# graficos
# plot2 <- function(df, oque, peloque, legenda = 'none'){
# chamada <- paste0(df,' %>%
# ggplot(aes(x = ', oque,', fill = ',peloque,')) +
# geom_density(alpha = .3) + theme(legend.position = ',legenda,')')
# assign('p0',ggplot(chamada))
# }
#
# p0 <- plot2(df = 'bf0NA', oque = 'f0', peloque = 'gender')
# ggplot(p0)
p0 <- bf0NA %>%
ggplot(aes(x = f0, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p1 <- bf0NA %>%
ggplot(aes(x = f1, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p2 <- bf0NA %>%
ggplot(aes(x = f2, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p3 <- bf0NA %>%
ggplot(aes(x = f3, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p4 <- bf0NA %>%
ggplot(aes(x = f4, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p5 <- bf0NA %>%
ggplot(aes(x = f5, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p6 <- bf0NA %>%
ggplot(aes(x = f6, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p7 <- bf0NA %>%
ggplot(aes(x = f7, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p8 <- bf0NA %>%
ggplot(aes(x = f8, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p9 <- bf0NA %>%
ggplot(aes(x = zc1, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p10 <- bf0NA %>%
ggplot(aes(x = zc2, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p11 <- bf0NA %>%
ggplot(aes(x = rms1, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p12 <- bf0NA %>%
ggplot(aes(x = rms2, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
p13 <- bf0NA %>%
ggplot(aes(x = mhs1, fill = anyep_diff_w1)) +
geom_density(alpha = .3) + theme(legend.position = 'bottom')
# f0:f8
gridExtra::grid.arrange(p0,p1,p2,
p3,p4,p5,
p6,p7,p8, ncol=3)
# zc1:mhs1
gridExtra::grid.arrange(p9, p10,
p11,p12,p13, ncol=2)
# preditoras
x <- bf0NA %>%
select(f0:mhs1)
# matriz de correlacao
corr <- round(cor(x), 1)
# Gráfico
ggcorrplot(corr, hc.order = TRUE,
type = 'lower',
lab = TRUE,
lab_size = 3,
method = 'circle',
colors = c('tomato2', 'white', 'springgreen3'),
# title = 'Correlograma de mtcars',
ggtheme = theme_bw)
# pca
av <- prcomp(bf0NA[,11:24], scale = T)
screeplot(av, type = 'lines')
##
# graficos pca
# id
autoplot(av, data = bf0NA, colour = 'id', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'none')
# wordType
autoplot(av, data = bf0NA, colour = 'wordType', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# gender
autoplot(av, data = bf0NA, colour = 'gender', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# highRisk
autoplot(av, data = bf0NA, colour = 'highRisk', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# algumaDM
autoplot(av, data = bf0NA, colour = 'algumaDM', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# readcomp_diff_w1
autoplot(av, data = bf0NA, colour = 'readcomp_diff_w1', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# read_diff_w1
autoplot(av, data = bf0NA, colour = 'read_diff_w1', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# rspeed_diff_w1
autoplot(av, data = bf0NA, colour = 'rspeed_diff_w1', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# write_diff_w1
autoplot(av, data = bf0NA, colour = 'write_diff_w1', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
# anyep_diff_w1
autoplot(av, data = bf0NA, colour = 'anyep_diff_w1', loadings = T,
loadings.label = T, type = 'raw') +
theme(legend.position = 'bottom')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.