library(dplyr)
. <- get_data_all()
data_all <- .$data_all
country_last_update_info <- .$country_last_update_info
colnames_expected <- c(
"unit","name","pos","cap_new_cases","sum_cap_new_cases","cap_new_deaths",
"sum_cap_new_deaths","cap_new_tests","sum_cap_new_tests","cap100k_new_cases",
"sum_cap100k_new_cases","cap100k_new_deaths","sum_cap100k_new_deaths",
"cap100k_new_tests","sum_cap100k_new_tests","all_new_cases","sum_all_new_cases",
"all_new_deaths","sum_all_new_deaths","all_new_tests","sum_all_new_tests",
"cap_cum_cases","cap_cum_deaths","cap_cum_tests","cap100k_cum_cases",
"cap100k_cum_deaths","cap100k_cum_tests","all_cum_cases","all_cum_deaths",
"all_cum_tests","pop_100k","pop"
)
test_that("Summarize by group for a single day", {
time_start <- as.Date("2021-06-17")
time_end <- time_start
data_filtered <-
data_all |>
filter(set == "country") |>
select(-name, -set) |>
left_join(country_last_update_info, by = "unit") |>
filter(time == time_start)
data_summarized_over_one_day <- shinyfind::summarize_over_time(data_filtered)
data_group_single_day <- shinyfind::summarize_over_group(data_summarized_over_one_day, "income")
a <- data_all |>
filter(set == "income") |>
filter(time == time_start) |>
filter(unit == "High") |>
pull(all_cum_cases)
b <- data_group_single_day |>
filter(unit == "High") |>
pull(all_cum_cases)
expect_equal(a, b)
expect_s3_class(data_group_single_day, "data.frame")
expect_true(
all(
names(data_group_single_day) == colnames_expected
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.