mpp_gradient_mu | R Documentation |
FUNCTION_DESCRIPTION
mpp_gradient_mu(
y,
mu,
...,
gaussint_options = NULL,
h = 1e-06,
symmetric = FALSE
)
mpp_hessian_mu(
y,
mu,
...,
gaussint_options = NULL,
h = 1e-04,
diagonal = FALSE
)
mpp_gradient_u(
y,
mu,
u,
Sigma_model,
gaussint_options = NULL,
h = 1e-06,
symmetric = FALSE,
log = FALSE,
...
)
y |
A matrix of multivariate 0/1 observations |
mu |
A matrix of matrix of multivariate latent scale expectation parameters |
... |
Further parameters passed on to
|
gaussint_options |
list of options for |
h |
Step size for finite differences, Default: 1e-06 (for gradients) or 1e-04 (for hessian) |
symmetric |
For gradients, whether to use symmetric finite differences, Default: FALSE |
diagonal |
Logical; if |
u |
A vector of latent variables identifying the Normalised Wishart
matrix, length |
Sigma_model |
A |
log |
Whether to compute gradient of the log-probability,
Default: |
DETAILS gradient
DETAILS hessain
DETAILS
OUTPUT_DESCRIPTION gradient for mu
OUTPUT_DESCRIPTION hessian for mu
OUTPUT_DESCRIPTION gradient for u
mpp()
## Not run:
if (interactive()) {
# EXAMPLE1 gradient
}
## End(Not run)
## Not run:
if (interactive()) {
# EXAMPLE1 hessian
}
## End(Not run)
## Not run:
if (interactive()) {
# EXAMPLE1
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.