Description Usage Arguments Details Value Examples
Estimate a multivariate probit model from multivariate binary data in a Bayesian generalised linear model framework
1 | multiprobit(model = NULL, ..., options = NULL)
|
model |
An |
... |
Parameters passed on to |
options |
An |
For details on the multivariate probit model, see
mp_model()
. The multiprobit
function estimates
the model for observations stored in response
An mp_estimate
object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## Not run:
if (interactive()) {
N <- 6
d <- 2
J <- 1
set.seed(1L)
X <- cbind(1, matrix(rnorm(N * (J - 1)), N, J - 1))
B <- matrix(0.5, J, d)
Y <- matrix(rnorm(N * d, mean = as.vector(X %*% B)) > 0, N, d)
df <- d + 1
prec_beta <- 0.1
model <- mp_model(
response = Y, X = X,
df = df, prec_beta = prec_beta
)
opt <- multiprobit(
model = model,
options =
mp_options(
gaussint = list(max.threads = 1),
strategy = "stepwise"
)
)
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.