topNodes | R Documentation |
Generate a table of top-ranked nodes from the optimal resolution candidate of entities on a tree.
topNodes(
object,
n = 10,
sort_by = NULL,
sort_decreasing = FALSE,
sort_by_absolute = FALSE,
p_value = 1
)
object |
An output object from evalCand. |
n |
An integer, the maximum number of entities to return. |
sort_by |
A character string specifying the column of
|
sort_decreasing |
A logical value indicating whether to sort by
decreasing value of the |
sort_by_absolute |
A logical value indicating whether to take the
absolute value of the |
p_value |
A numeric cutoff value for adjusted p-values. Only entities with adjusted p-values equal or lower than specified are returned. |
A data.frame
with test results. The node
column stores the node number for each entity.
Ruizhu Huang, Charlotte Soneson
suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)
})
data(tinyTree)
ggtree(tinyTree, branch.length = "none") +
geom_text2(aes(label = node)) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
geom_hilight(node = 18, fill = "orange", alpha = 0.3)
set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)
fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),
pvalue = pv,
logFoldChange = fc)
ll <- getCand(tree = tinyTree, score_data = df,
node_column = "node",
p_column = "pvalue",
sign_column = "logFoldChange")
cc <- evalCand(tree = tinyTree, levels = ll$candidate_list,
score_data = df, node_column = "node",
p_column = "pvalue", sign_column = "logFoldChange",
limit_rej = 0.05)
## Unsorted result table
topNodes(cc)
## Sort by p-value in increasing order
topNodes(cc, sort_by = "pvalue")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.