keras_model <- function() {
keras_model <- keras::keras_model_sequential()
initializer <- keras::initializer_glorot_uniform(seed = 1983L)
keras_model %>%
keras::layer_dense(units = 16L, activation = "relu", input_shape = 6L,
kernel_initializer = initializer) %>%
keras::layer_dropout(rate = 0.2, seed = 1983L)
keras_model
}
test_model <- function(options, keys, fitted_class, pred_col_names) {
## options <- options_mc
## model_key <- "glmnet_cv"
## keys <- c(formula = "all", dataset = "base", resample = "cv4",
## seed = "sed_01", model = model_key, preproc = "ppc_01",
## fit_param = "default")
## fitted_class <- "glmnet"
## pred_col_names <- pred_mc_col_names
cv <- new_cv(options, keys)
expect_is(cv, "CV")
expect_is(cv$do()$result, "data.frame")
## data
resamples <- cv$get_resample(cv$cv_seed)
rsplit <- resamples$splits[[1L]]
test <- cv$test
ids <- cv$datasets$test_ids
## fit
fitted <- cv$fit(rsplit)
expect_is(fitted, fitted_class)
## task prediction
pred <- cv$predict(fitted, test, ids)
expect_named(pred, pred_col_names)
expect_equal(nrow(pred), nrow(test))
cv
}
test_prob <- function(pred1, pred2) {
pred1 <- dplyr::select(pred1, dplyr::starts_with(".prob_"))
pred2 <- dplyr::select(pred2, dplyr::starts_with(".prob_"))
if (ncol(pred2) == 2L) pred2 <- pred2[, 2L]
expect_true(dplyr::setequal(pred1, pred2))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.