## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval=FALSE
)
## ----Input / Output files------------------------------------------------
# Input_Image_File = system.file('extdata', 'RASTER', 'S2A_T33NUD_20180104_Subset', package = 'biodivMapR')
#
# # Input.Image.File = raster2BIL(Raster.Path = Input.Image.File,
# # Sensor = 'SENTINEL_2A',
# # Convert.Integer = TRUE,
# # Output.Directory = '~/test')
#
# Input_Mask_File = FALSE
#
# Output_Dir = 'RESULTS'
## ----Spatial resolution--------------------------------------------------
# window_size = 10
## ----PCA filtering-------------------------------------------------------
# FilterPCA = FALSE
## ----Computing options---------------------------------------------------
# nbCPU = 2
# MaxRAM = 0.5
# nbclusters = 50
## ----Mask non vegetated / shaded / cloudy pixels-------------------------
# NDVI_Thresh = 0.5
# Blue_Thresh = 500
# NIR_Thresh = 1500
# print("PERFORM RADIOMETRIC FILTERING")
# Input_Mask_File = perform_radiometric_filtering(Input_Image_File, Input_Mask_File, Output_Dir,
# NDVI_Thresh = NDVI_Thresh, Blue_Thresh = Blue_Thresh,
# NIR_Thresh = NIR_Thresh)
## ----PCA-----------------------------------------------------------------
# print("PERFORM PCA ON RASTER")
# PCA_Output = perform_PCA(Input_Image_File, Input_Mask_File, Output_Dir,
# FilterPCA = TRUE, nbCPU = nbCPU,MaxRAM = MaxRAM)
# # path for the PCA raster
# PCA_Files = PCA_Output$PCA_Files
# # number of pixels used for each partition used for k-means clustering
# Pix_Per_Partition = PCA_Output$Pix_Per_Partition
# # number of partitions used for k-means clustering
# nb_partitions = PCA_Output$nb_partitions
# # path for the updated mask
# Input_Mask_File = PCA_Output$MaskPath
# # parameters of the PCA model
# PCA_model = PCA_Output$PCA_model
# # definition of spectral bands to be excluded from the analysis
# SpectralFilter = PCA_Output$SpectralFilter
#
# print("Select PCA components for diversity estimations")
# select_PCA_components(Input_Image_File, Output_Dir, PCA_Files, File_Open = TRUE)
## ----Spectral species map------------------------------------------------
# print("MAP SPECTRAL SPECIES")
# map_spectral_species(Input_Image_File, Output_Dir, PCA_Files, PCA_model, SpectralFilter, Input_Mask_File,
# Pix_Per_Partition, nb_partitions, nbCPU=nbCPU, MaxRAM=MaxRAM,
# nbclusters = nbclusters, TypePCA = TypePCA, CR = TRUE)
## ----alpha and beta diversity maps---------------------------------------
# print("MAP ALPHA DIVERSITY")
# # Index.Alpha = c('Shannon','Simpson')
# Index_Alpha = c('Shannon')
# map_alpha_div(Input_Image_File, Output_Dir, window_size, nbCPU=nbCPU,
# MaxRAM=MaxRAM, Index_Alpha = Index_Alpha, nbclusters = nbclusters)
#
# print("MAP BETA DIVERSITY")
# map_beta_div(Input_Image_File, Output_Dir, window_size, nb_partitions=nb_partitions,
# nbCPU=nbCPU, MaxRAM=MaxRAM, nbclusters = nbclusters)
## ----alpha and beta diversity indices from vector layer------------------
# # location of the spectral species raster needed for validation
# TypePCA = 'SPCA'
# Dir.Raster = file.path(Output.Dir,basename(Input.Image.File),TypePCA,'SpectralSpecies')
# Name.Raster = 'SpectralSpecies'
# Path.Raster = file.path(Dir.Raster,Name.Raster)
#
# # location of the directory where shapefiles used for validation are saved
# vect = system.file('extdata', 'VECTOR', package = 'biodivMapR')
# Shannon.All = list() # ??
#
# # list vector data
# Path.Vector = list_shp(vect)
# Name.Vector = tools::file_path_sans_ext(basename(Path.Vector))
#
# # get alpha and beta diversity indicators corresponding to shapefiles
# Biodiv.Indicators = diversity_from_plots(Raster = Path.Raster, Plots = Path.Vector,NbClusters = nbclusters)
# # if no name
# Biodiv.Indicators$Name.Plot = seq(1,length(Biodiv.Indicators$Shannon[[1]]),by = 1)
# Shannon.RS = c(Biodiv.Indicators$Shannon)[[1]]
## ----Write validation----------------------------------------------------
# # write RS indicators
# ####################################################
# # write indicators for alpha diversity
# Path.Results = file.path(Output.Dir, basename(Input.Image.File), TypePCA, 'VALIDATION')
# dir.create(Path.Results, showWarnings = FALSE, recursive = TRUE)
# ShannonIndexFile <- file.path(Path.Results, "ShannonIndex.tab")
# write.table(Shannon.RS, file = ShannonIndexFile, sep = "\t", dec = ".", na = " ",
# row.names = Biodiv.Indicators$Name.Plot, col.names= F, quote=FALSE)
#
# Results = data.frame(Name.Vector, Biodiv.Indicators$Richness, Biodiv.Indicators$Fisher, Biodiv.Indicators$Shannon, Biodiv.Indicators$Simpson)
# names(Results) = c("ID_Plot", "Species_Richness", "Fisher", "Shannon", "Simpson")
# write.table(Results, file = paste(Path.Results,"AlphaDiversity.tab",sep=''), sep="\t", dec=".", na=" ", row.names = F, col.names= T,quote=FALSE)
#
# # write indicators for beta diversity
# BC_mean = Biodiv.Indicators$BCdiss
# colnames(BC_mean) = rownames(BC_mean) = Biodiv.Indicators$Name.Plot
# write.table(BC_mean, file = paste(Path.Results,"BrayCurtis.csv",sep=''), sep="\t", dec=".", na=" ", row.names = F, col.names= T,quote=FALSE)
#
## ----PCoA on Field Plots-------------------------------------------------
# # apply ordination using PCoA (same as done for map_beta_div)
# library(labdsv)
# MatBCdist = as.dist(BC_mean, diag = FALSE, upper = FALSE)
# BetaPCO = pco(MatBCdist, k = 3)
#
## ----plot PCoA & Shannon-------------------------------------------------
# # very uglily assign vegetation type to polygons in shapefiles
# nbSamples = c(6,4,7,7)
# vg = c('Forest high diversity', 'Forest low diversity', 'Forest medium diversity', 'low vegetation')
# Type_Vegetation = c()
# for (i in 1: length(nbSamples)){
# for (j in 1:nbSamples[i]){
# Type_Vegetation = c(Type_Vegetation,vg[i])
# }
# }
#
# # create data frame including alpha and beta diversity
# library(ggplot2)
# Results = data.frame('vgtype'=Type_Vegetation,'pco1'= BetaPCO$points[,1],'pco2'= BetaPCO$points[,2],'pco3' = BetaPCO$points[,3],'shannon'=Shannon.RS)
#
# # plot field data in the PCoA space, with size corresponding to shannon index
# ggplot(Results, aes(x=pco1, y=pco2, color=vgtype,size=shannon)) +
# geom_point(alpha=0.6) +
# scale_color_manual(values=c("#e6140a", "#e6d214", "#e68214", "#145ae6"))
# filename = file.path(Path.Results,'BetaDiversity_PcoA1_vs_PcoA2.png')
# ggsave(filename, plot = last_plot(), device = 'png', path = NULL,
# scale = 1, width = 6, height = 4, units = "in",
# dpi = 600, limitsize = TRUE)
#
#
# ggplot(Results, aes(x=pco1, y=pco3, color=vgtype,size=shannon)) +
# geom_point(alpha=0.6) +
# scale_color_manual(values=c("#e6140a", "#e6d214", "#e68214", "#145ae6"))
# filename = file.path(Path.Results,'BetaDiversity_PcoA1_vs_PcoA3.png')
# ggsave(filename, plot = last_plot(), device = 'png', path = NULL,
# scale = 1, width = 6, height = 4, units = "in",
# dpi = 600, limitsize = TRUE)
#
# ggplot(Results, aes(x=pco2, y=pco3, color=vgtype,size=shannon)) +
# geom_point(alpha=0.6) +
# scale_color_manual(values=c("#e6140a", "#e6d214", "#e68214", "#145ae6"))
# filename = file.path(Path.Results,'BetaDiversity_PcoA2_vs_PcoA3.png')
# ggsave(filename, plot = last_plot(), device = 'png', path = NULL,
# scale = 1, width = 6, height = 4, units = "in",
# dpi = 600, limitsize = TRUE)
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.