Funções e bancos de dados para a disciplina de Planejamento de Experimentos.
Você pode instalar a versão de desenvolvimento do pacote planex a partir do GitHub da seguinte forma:
# install.packages("devtools")
devtools::install_github("fndemarqui/planex")
library(planex)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#> Loading required package: ggplot2
data(saquinhos)
saquinhos$concentracao <- as.factor(saquinhos$concentracao)
mod <- aov(resistencia ~ concentracao, data = saquinhos)
plotResiduals(mod)
testResiduals(mod)
#>
#> Shapiro-Wilk normality test
#>
#> data: resid
#> W = 0.96624, p-value = 0.5757
#>
#> ------------------------------------------
#> Bartlett test of Homogeneity of Variances:
#> Bartlett's K-squared df p.value
#> concentracao 1.135246 3 0.7685731
#>
#> -----------------------------------------------
#> Durbin-Watson Test for Autocorrelated Errors:
#> lag Autocorrelation D-W Statistic p-value
#> 1 -0.1303884 2.181178 0.848
#> Alternative hypothesis: rho != 0
summary(mod)
#> Df Sum Sq Mean Sq F value Pr(>F)
#> concentracao 3 382.8 127.60 19.61 3.59e-06 ***
#> Residuals 20 130.2 6.51
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Realizando as comparações múltiplas:
library(agricolae)
library(multcomp)
#> Loading required package: mvtnorm
#> Loading required package: survival
#> Loading required package: TH.data
#> Loading required package: MASS
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#> select
#>
#> Attaching package: 'TH.data'
#> The following object is masked from 'package:MASS':
#>
#> geyser
library(emmeans)
#> Welcome to emmeans.
#> Caution: You lose important information if you filter this package's results.
#> See '? untidy'
comp1 <- HSD.test(mod, "concentracao", group = FALSE)
comp2 <- glht(mod, linfct = mcp(concentracao = "Tukey"))
comp3 <- emmeans(mod, pairwise ~ concentracao, adjust = "tukey")
comp1$comparison
#> difference pvalue signif. LCL UCL
#> 10 - 15 -1.333333 0.8022 -5.455896 2.78922925
#> 10 - 20 -5.500000 0.0066 ** -9.622563 -1.37743741
#> 10 - 5 5.666667 0.0051 ** 1.544104 9.78922925
#> 15 - 20 -4.166667 0.0470 * -8.289229 -0.04410408
#> 15 - 5 7.000000 0.0007 *** 2.877437 11.12256259
#> 20 - 5 11.166667 0.0000 *** 7.044104 15.28922925
summary(comp2)
#>
#> Simultaneous Tests for General Linear Hypotheses
#>
#> Multiple Comparisons of Means: Tukey Contrasts
#>
#>
#> Fit: aov(formula = resistencia ~ concentracao, data = saquinhos)
#>
#> Linear Hypotheses:
#> Estimate Std. Error t value Pr(>|t|)
#> 10 - 5 == 0 5.667 1.473 3.847 0.00490 **
#> 15 - 5 == 0 7.000 1.473 4.753 < 0.001 ***
#> 20 - 5 == 0 11.167 1.473 7.581 < 0.001 ***
#> 15 - 10 == 0 1.333 1.473 0.905 0.80221
#> 20 - 10 == 0 5.500 1.473 3.734 0.00648 **
#> 20 - 15 == 0 4.167 1.473 2.829 0.04677 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> (Adjusted p values reported -- single-step method)
comp3$contrasts
#> contrast estimate SE df t.ratio p.value
#> concentracao5 - concentracao10 -5.67 1.47 20 -3.847 0.0051
#> concentracao5 - concentracao15 -7.00 1.47 20 -4.753 0.0007
#> concentracao5 - concentracao20 -11.17 1.47 20 -7.581 <.0001
#> concentracao10 - concentracao15 -1.33 1.47 20 -0.905 0.8022
#> concentracao10 - concentracao20 -5.50 1.47 20 -3.734 0.0066
#> concentracao15 - concentracao20 -4.17 1.47 20 -2.829 0.0470
#>
#> P value adjustment: tukey method for comparing a family of 4 estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.