process_data: Data transforms

Description Usage Arguments Value Author(s) See Also Examples

View source: R/process_data.R

Description

The function for data transformation. For more details about the parameter arguments, use ?transfrom_data

Usage

1
process_data(train_df, test_df, method = "range")

Arguments

train_df

the training dataframe containing multiple multivariate time series formatted using the specific Table Schema, use showDF() to display schema specification details.

test_df

the test dataframe containing multiple multivariate time series formatted using the specific Table Schema, use showDF() to display schema specification details.

method

The transform nethod. Possible methods are:

BoxCox:

apply a Box-Cox transform, values must be non-zero and positive.

YeoJohnson:

apply a Yeo-Johnson transform, like a BoxCox, but values can be negative.

expoTrans:

apply a power transform like BoxCox and YeoJohnson.

zv:

remove attributes with a zero variance (all the same value).

nzv:

remove attributes with a near zero variance (close to the same value).

center:

divide values by standard deviation.

scale:

subtract mean from values.

range:

normalize values.

pca:

transform data to the principal components.

ica:

transform data to the independent components.

spatialSign:

project data onto a unit circle.

c("center", "scale"):

standardize data

Value

Returns the transformed training and test datasets

Author(s)

Cuong Sai and Maxim Shcherbakov.

See Also

showDF, validate_data,summarize_data

Examples

1
train

forvis/PdM documentation built on Dec. 5, 2020, 8:54 p.m.