View source: R/clusteringSeurat.R
clusteringSeurat | R Documentation |
Function that takes a dataset (either spatial or scRNA-seq), creates Seurat object, runs log normalization, PCA, etc, clustering
clusteringSeurat( datasetObject, datasetName, metadataAvailable = TRUE, normalizationMethod = "LOG", mapTypeValue = "umap", metadataObject, reductionValue = "umap", resolutionValue = 0.1, pcaValueOptimal = NULL, integrateValue = FALSE, specificPCA = FALSE, ngenes = 200, scaleFactor = 10000, nPCAS = 30, selectFeatures = NULL )
datasetObject |
dataset object |
datasetName |
name of the dataset |
metadataAvailable |
whether there is prior metadata available (default TRUE) |
normalizationMethod |
which normalization method to use (default LOG). options log normalization or SCTransform normalization (SCT) |
metadataObject |
metadata object |
reductionValue |
which dimensionality reduction to use, umap or tsne (default umap) |
resolutionValue |
define the resolution value to use for clustering (default 0.1) |
pcaValueOptimal |
define a specific PCA value to use (default NULL calculates automatically the optimal PCA value) |
integrateValue |
whether dataset integration is needed (default FALSE) |
specificPCA |
whether PCA values needs to be calculated or not |
ngenes |
minimum number of features expressed in a cell (default 200) |
scaleFactor |
value for scaling (default 10000) |
nPCAS |
number of principal components to use (default 30) |
selectFeatures |
whether features need to be selected. Takes all features as default (default NULL) |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.