clusteringSeurat: Seurat clustering with log or SCT normalization

View source: R/clusteringSeurat.R

clusteringSeuratR Documentation

Seurat clustering with log or SCT normalization

Description

Function that takes a dataset (either spatial or scRNA-seq), creates Seurat object, runs log normalization, PCA, etc, clustering

Usage

clusteringSeurat(
  datasetObject,
  datasetName,
  metadataAvailable = TRUE,
  normalizationMethod = "LOG",
  mapTypeValue = "umap",
  metadataObject,
  reductionValue = "umap",
  resolutionValue = 0.1,
  pcaValueOptimal = NULL,
  integrateValue = FALSE,
  specificPCA = FALSE,
  ngenes = 200,
  scaleFactor = 10000,
  nPCAS = 30,
  selectFeatures = NULL
)

Arguments

datasetObject

dataset object

datasetName

name of the dataset

metadataAvailable

whether there is prior metadata available (default TRUE)

normalizationMethod

which normalization method to use (default LOG). options log normalization or SCTransform normalization (SCT)

metadataObject

metadata object

reductionValue

which dimensionality reduction to use, umap or tsne (default umap)

resolutionValue

define the resolution value to use for clustering (default 0.1)

pcaValueOptimal

define a specific PCA value to use (default NULL calculates automatically the optimal PCA value)

integrateValue

whether dataset integration is needed (default FALSE)

specificPCA

whether PCA values needs to be calculated or not

ngenes

minimum number of features expressed in a cell (default 200)

scaleFactor

value for scaling (default 10000)

nPCAS

number of principal components to use (default 30)

selectFeatures

whether features need to be selected. Takes all features as default (default NULL)


fpestana-git/clusteringR documentation built on May 3, 2022, 11:59 a.m.