Top_Incomes: Top Income plot

Description Usage Arguments Value References Examples

Description

Top Income plot

Usage

1
2
Top_Incomes(data, weights = rep(1, length(data)), p = 0.01,
  thr = seq(0.85, 0.999, by = 0.001), tail_index = TRUE, ...)

Arguments

data

numeric, a vector of observations

p

numeric, probability level (default 0.01)

thr

numeric, vector of probability levels to model a Pareto distribution (default is seq(.85,.999,by=.001) from 0.85 up to 0.999)

tail_index

logical to plot the tail index (default TRUE)

weight

numeric, a vector of weights (default is equal weights)

Value

one or two graphs (depending on tail==TRUE)

References

Charpentier & Flachaire (2019) Pareto Models for Top Incomes hal-02145024

Examples

1
2
3
4
################ Top Incomes on Synthetic Data
url_1 <- "https://github.com/freakonometrics/TopIncomes/raw/master/dataframe_yw_1.csv"
df <- read.table(url_1,sep=";",header=TRUE)
## Not run: Top_Incomes(data = df$y, weights = df$w)

freakonometrics/TopIncomes documentation built on July 7, 2019, 8:06 a.m.