MLE.gpd: Maximum Likelihood estimation of the Generalized Pareto...

Description Usage Arguments Value References Examples

Description

Maximum Likelihood estimation of the Generalized Pareto distribution, with weights

Usage

1
2
3
MLE.gpd(data, weights = rep(1, length(x)), threshold = NA,
  nextremes = NA, method = "ml", information = c("observed",
  "expected"), ...)

Arguments

data

numeric, vector of observations

weights

numeric, vector of weights (default = 1)

method

character, method used for inference ("ml" for maximum likelihood)

information

character (not used)

threhol

numeric, threshold parameter of the Generalized Pareto distribution (mu)

nextrmes

numeric, number of largest values considered (integer)

Value

a list xi the tail index, mu the threshold, "beta" the scaling coefficient, and k the number of observations above mu

References

Charpentier & Flachaire (2019) Pareto Models for Top Incomes hal-02145024

Examples

1
2
3
4
5
set.seed(123)
x <- rpareto1(100, 1, 1.5)
w <- rgamma(100,10,10)
estim <- MLE.gpd(data=x, weights=w, threshold=1)
estim$par.ests

freakonometrics/TopIncomes documentation built on July 7, 2019, 8:06 a.m.