knitr::opts_chunk$set( warning = FALSE, message = FALSE, fig.height = 5, fig.width = 5 ) options(digits=4) par(mar=c(5,4,1,1)+.1)
The inverse of a matrix plays the same roles in matrix algebra as the reciprocal of a number and division does in ordinary arithmetic: Just as we can solve a simple equation like $4 x = 8$ for $x$ by multiplying both sides by the reciprocal $$ 4 x = 8 \Rightarrow 4^{-1} 4 x = 4^{-1} 8 \Rightarrow x = 8 / 4 = 2$$ we can solve a matrix equation like $\mathbf{A x} = \mathbf{b}$ for the vector $\mathbf{x}$ by multiplying both sides by the inverse of the matrix $\mathbf{A}$, $$\mathbf{A x} = \mathbf{b} \Rightarrow \mathbf{A}^{-1} \mathbf{A x} = \mathbf{A}^{-1} \mathbf{b} \Rightarrow \mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$$
The following examples illustrate the basic properties of the inverse of a matrix.
matlib
packageThis defines: inv()
, Inverse()
; the standard R function for matrix inverse is solve()
library(matlib)
The ordinary inverse is defined only for square matrices.
A <- matrix( c(5, 1, 0, 3,-1, 2, 4, 0,-1), nrow=3, byrow=TRUE) det(A)
det(A) != 0
, so inverse existsOnly non-singular matrices have an inverse.
(AI <- inv(A))
AI * A = diag(nrow(A))
The inverse of a matrix $A$ is defined as the matrix $A^{-1}$ which multiplies $A$ to give the identity matrix, just as, for a scalar $a$, $a a^{-1} = a / a = 1$.
NB: Sometimes you will get very tiny off-diagonal values (like 1.341e-13
). The
function zapsmall()
will round those to 0.
AI %*% A
inv(inv(A)) = A
Taking the inverse twice gets you back to where you started.
inv(AI)
inv(A)
is symmetric if and only if A is symmetricinv( t(A) ) is_symmetric_matrix(A) is_symmetric_matrix( inv( t(A) ) )
Here is a symmetric case:
B <- matrix( c(4, 2, 2, 2, 3, 1, 2, 1, 3), nrow=3, byrow=TRUE) inv(B) inv( t(B) ) is_symmetric_matrix(B) is_symmetric_matrix( inv( t(B) ) ) all.equal( inv(B), inv( t(B) ) )
In these simple examples, it is often useful to show the results of matrix calculations
as fractions, using MASS::fractions()
.
D <- diag(c(1, 2, 4)) inv(D) MASS::fractions( diag(1 / c(1, 2, 4)) )
inv(inv(A)) = A
A <- matrix(c(1, 2, 3, 2, 3, 0, 0, 1, 2), nrow=3, byrow=TRUE) AI <- inv(A) inv(AI)
inv(t(A)) = t(inv(A))
inv( t(A) ) t( inv(A) )
inv( k*A ) = (1/k) * inv(A)
inv(5 * A) (1/5) * inv(A)
inv(A * B) = inv(B) %*% inv(A)
B <- matrix(c(1, 2, 3, 1, 3, 2, 2, 4, 1), nrow=3, byrow=TRUE) C <- B[, 3:1] A %*% B inv(A %*% B) inv(B) %*% inv(A)
This extends to any number of terms: the inverse of a product is the product of the inverses in reverse order.
(ABC <- A %*% B %*% C) inv(A %*% B %*% C) inv(C) %*% inv(B) %*% inv(A) inv(ABC)
The determinant of an inverse is the inverse (reciprocal) of the determinant
det(AI) 1 / det(A)
Some of these properties of the matrix inverse can be more easily understood from geometric diagrams. Here, we take a $2 \times 2$ non-singular matrix $A$,
A <- matrix(c(2, 1, 1, 2), nrow=2, byrow=TRUE) A det(A)
The larger the determinant of $A$, the smaller is the determinant of $A^{-1}$.
AI <- inv(A) MASS::fractions(AI) det(AI)
Now, plot the rows of $A$ as vectors $a_1, a_2$ from the origin in a 2D space.
As illustrated in vignette("a1-det-ex1")
, the area of the parallelogram
defined by these vectors is the determinant.
par(mar=c(3,3,1,1)+.1) xlim <- c(-1,3) ylim <- c(-1,3) plot(xlim, ylim, type="n", xlab="X1", ylab="X2", asp=1) sum <- A[1,] + A[2,] # draw the parallelogram determined by the rows of A polygon( rbind(c(0,0), A[1,], sum, A[2,]), col=rgb(1,0,0,.2)) vectors(A, labels=c(expression(a[1]), expression(a[2])), pos.lab=c(4,2)) vectors(sum, origin=A[1,], col="gray") vectors(sum, origin=A[2,], col="gray") text(mean(A[,1]), mean(A[,2]), "A", cex=1.5)
The rows of the inverse $A^{-1}$ can be shown as vectors $a^1, a^2$ from the origin in the same space.
par(mar=c(3,3,1,1)+.1) xlim <- c(-1,3) ylim <- c(-1,3) plot(xlim, ylim, type="n", xlab="X1", ylab="X2", asp=1) sum <- A[1,] + A[2,] # draw the parallelogram determined by the rows of A polygon( rbind(c(0,0), A[1,], sum, A[2,]), col=rgb(1,0,0,.2)) vectors(A, labels=c(expression(a[1]), expression(a[2])), pos.lab=c(4,2)) vectors(sum, origin=A[1,], col="gray") vectors(sum, origin=A[2,], col="gray") text(mean(A[,1]), mean(A[,2]), "A", cex=1.5) vectors(AI, labels=c(expression(a^1), expression(a^2)), pos.lab=c(4,2)) sum <- AI[1,] + AI[2,] polygon( rbind(c(0,0), AI[1,], sum, AI[2,]), col=rgb(0,0,1,.2)) text(mean(AI[,1])-.3, mean(AI[,2])-.2, expression(A^{-1}), cex=1.5)
Thus, we can see:
The shape of $A^{-1}$ is a $90^o$ rotation of the shape of $A$.
$A^{-1}$ is small in the directions where $A$ is large.
The vector $a^2$ is at right angles to $a_1$ and $a^1$ is at right angles to $a_2$
If we multiplied $A$ by a constant $k$ to make its determinant larger (by a factor of $k^2$), the inverse would have to be divided by the same factor to preserve $A A^{-1} = I$.
One might wonder whether these properties depend on symmetry of $A$, so here is another example, for the matrix A <- matrix(c(2, 1, 1, 1), nrow=2)
, where $\det(A)=1$.
(A <- matrix(c(2, 1, 1, 1), nrow=2)) (AI <- inv(A))
The areas of the two parallelograms are the same because $\det(A) = \det(A^{-1}) = 1$.
par(mar=c(3,3,1,1)+.1) xlim <- c(-1,3) ylim <- c(-1,3) plot(xlim, ylim, type="n", xlab="X1", ylab="X2", asp=1) sum <- A[1,] + A[2,] # draw the parallelogram determined by the rows of A polygon( rbind(c(0,0), A[1,], sum, A[2,]), col=rgb(1,0,0,.2)) vectors(A, labels=c(expression(a[1]), expression(a[2])), pos.lab=c(4,2)) vectors(sum, origin=A[1,], col="gray") vectors(sum, origin=A[2,], col="gray") text(mean(A[,1]), mean(A[,2]), "A", cex=1.5) vectors(AI, labels=c(expression(a^1), expression(a^2)), pos.lab=c(4,2)) sum <- AI[1,] + AI[2,] polygon( rbind(c(0,0), AI[1,], sum, AI[2,]), col=rgb(0,0,1,.2)) text(-.1, -.1, expression(A^{-1}), cex=1.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.