#' frechet: Statistical Analysis for Random Objects and Non-Euclidean Data
#' @description Provides implementation of statistical methods for random objects
#' lying in various metric spaces, which are not necessarily linear spaces.
#' The core of this package is Fréchet regression for random objects with
#' Euclidean predictors, which allows one to perform regression analysis
#' for non-Euclidean responses under some mild conditions.
#' Examples include distributions in \eqn{L^2}-Wasserstein space,
#' covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics.
#' References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.
#' @docType package
#' @name frechet
#' @importFrom grDevices colorRampPalette dev.new palette
#' @importFrom graphics abline axis barplot boxplot grid hist layout legend lines matlines matplot par plot points polygon rect text
#' @importFrom methods as
#' @importFrom Matrix Matrix
#' @importFrom pracma trapz
#' @importFrom stats aggregate approx approxfun binomial cov cor density dist dnorm dunif fitted glm kmeans lm median na.omit optim optimize poly predict quantile rnorm runif spline var sd weighted.mean
#' @importFrom utils head tail
NULL
utils::globalVariables(c("y"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.