fit.mean: Penalized least square estimation with GCV

Description Usage Arguments

View source: R/fit.mean.R

Description

The function selects penalty parameter via generalized cross validation and solves penalized least square problem in estimating mean functions with bivariate penalized splines.

Usage

1
fit.mean(B, Q2, K, lambda = 10^(-6:3), Y, proj.matrix = FALSE)

Arguments

B

bivariate spline basis matrix.

Q2

qr decomposition of the smoothness matrix.

K

energy matrix.

lambda

candidate of the penalty parameter.

Y

a matrix of data with each row corresponding to one subject/image.

proj.matrix

a logical value indicating whether the projection matrix will be returned for adjusting σ(z) in the construction of SCC.


funstatpackages/ImageSCC documentation built on March 3, 2020, 12:25 a.m.