cv.image: Choose triangulation for estimating mean functions via...

Description Usage Arguments Details Examples

View source: R/cv.image.R

Description

The function selects triangulation for estimating mean function based on leave-image-out cross-validation.

Usage

1
cv.image(Y, Z, d.est = 5, r = 1, V.ests, Tr.ests, lambda, nfold = 10)

Arguments

Y

a matrix of imaging data, each row corresponding to one subject/image.

Z

a 2-column matrix specifying locations of each pixel/voxel.

d.est

degree of bivariate spline, default is 5.

r

smoothness parameter. Default is 1.

V.ests

lists of matrices containing vertices' information of triangulation candidates.

Tr.ests

list of 3-column matrices specifying triangles in the triangulation candidates.

lambda

the vector of the candidates of penalty parameter.

nfold

number of folds in k-fold cross-validation. Default is 10.

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Triangulation information;
data(Brain.V1); data(Brain.Tr1); # triangulation No. 1;
data(Brain.V2); data(Brain.Tr2); # triangulation No. 2;
data(Brain.V3); data(Brain.Tr3); # triangulation No. 3;
V.ests=list(V1=Brain.V1,V2=Brain.V2,V3=Brain.V3);
Tr.ests=list(Tr1=Brain.Tr1,Tr2=Brain.Tr2,Tr3=Brain.Tr3);
# Location information;
n1=40; n2=40;
npix=n1*n2
u1=seq(0,1,length.out=n1)
v1=seq(0,1,length.out=n2)
uu=rep(u1,each=n2)
vv=rep(v1,times=n1)
Z=as.matrix(cbind(uu,vv))
ind.inside=inVT(Brain.V1,Brain.Tr1,Z[,1],Z[,2])$ind.inside
# Parameters for bivariate spline over triangulation;
d.est=5; r=1;
# simulation parameters
n=50; lam1=0.5; lam2=0.2; mu.func=2; noise.type='Func';
lambda=10^{seq(-6,3,0.5)}
dat=data1g.image(n,Z,ind.inside,mu.func,noise.type,lam1,lam2)
Y=dat$Y
tri.est=cv.image(Y,Z,d.est,r,V.ests,Tr.ests,lambda)
tri.est$tri.select; V.est=tri.est$V.est; Tr.est=tri.est$Tr.est;

funstatpackages/ImageSCC documentation built on March 3, 2020, 12:25 a.m.