Description Details Functions Installing and using Citation Author(s) References See Also Examples
Six common multi-category classification accuracy evaluation measures are included i.e., Correct Classification Percentage (CCP), Hypervolume Under Manifold (HUM), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), Polytomous Discrimination Index (PDI) and R-squared (RSQ). It allows users to fit many popular classification procedures, such as multinomial logistic regression, support vector machine, classification tree, and user computed risk values.
Package: | mcca |
Type: | Package |
Version: | 0.5 |
Date: | 2019-02-04 |
License: | GPL |
ccp | Calculate CCP Value |
hum | Calculate HUM Value |
idi | Calculate IDI Value |
nri | Calculate NRI Value |
pdi | Calculate PDI Value |
rsq | Calculate RSQ Value |
pm | Calculate Probability Matrix |
ests | Estimated Information for Single Model Evaluation Value |
estp | Estimated Information for Paired Model Evaluation Value |
To install this package, make sure you are connected to the internet and issue the following command in the R prompt:
1 2 | install.packages("mcca")
|
To load the package in R:
1 2 |
Li J, Gao M, D'Agostino R. Evaluating classification accuracy for modern learning approaches. Statistics in Medicine. 2019;1-27. https://doi.org/10.1002/sim.8103
Ming Gao, Jialiang Li
Maintainer: Ming Gao <gaoming@umich.edu>
Li, Ming G., D'Agostino. (2019). Evaluating Classification Accuracy for Modern Learning Approaches. Statistics in Medicine.
Li, J. and Fine, J. P. (2008): ROC analysis with multiple tests and multiple classes: methodology and applications in microarray studies. Biostatistics. 9 (3): 566-576.
Li, J., Chow, Y., Wong, W.K., and Wong, T.Y. (2014). Sorting Multiple Classes in Multi-dimensional ROC Analysis: Parametric and Nonparametric Approaches. Biomarkers. 19(1): 1-8.
Li, J., Jiang, B. and Fine, J. P. (2013). Multicategory reclassification statistics for assessing Improvements in diagnostic accuracy. Biostatistics. 14(2): 382-394.
Li, J., Jiang, B., and Fine, J. P. (2013). Letter to Editor: Response. Biostatistics. 14(4): 809-810.
Van Calster B, Vergouwe Y, Looman CWN, Van Belle V, Timmerman D and Steyerberg EW. Assessing the discriminative ability of risk models for more than two outcome categories. European Journal of Epidemiology 2012; 27: 761 C 770.
Li, J., Feng, Q., Fine, J.P., Pencina, M.J., Van Calster, B. (2017). Nonparametric estimation and inference for polytomous discrimination index. Statistical Methods in Medical Research. In Press.
CRAN packages HUM for HUM.
CRAN packages nnet, rpart, e1071, MASS employed in this package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | rm(list=ls())
str(iris)
data <- iris[, 1:4]
label <- iris[, 5]
ccp(y = label, d = data, method = "multinom", k = 3,maxit = 1000,MaxNWts = 2000,trace=FALSE)
## [1] 0.9866667
ccp(y = label, d = data, method = "multinom", k = 3)
## [1] 0.9866667
ccp(y = label, d = data, method = "svm", k = 3)
## [1] 0.9733333
ccp(y = label, d = data, method = "svm", k = 3,kernel="sigmoid",cost=4,scale=TRUE,coef0=0.5)
## [1] 0.8333333
ccp(y = label, d = data, method = "tree", k = 3)
## [1] 0.96
p = as.numeric(label)
ccp(y = label, d = p, method = "label", k = 3)
## [1] 1
hum(y = label, d = data,method = "multinom", k = 3)
## [1] 0.9972
hum(y = label, d = data,method = "svm", k = 3)
## [1] 0.9964
hum(y = label, d = data,method = "svm", k = 3,kernel="linear",cost=4,scale=TRUE)
## [1] 0.9972
hum(y = label, d = data, method = "tree", k = 3)
## [1] 0.998
ests(y = label, d = data,acc="hum",level=0.95,method = "multinom", k = 3,trace=FALSE)
## $value
## [1] 0.9972
## $sd
## [1] 0.002051529
## $interval
## [1] 0.9935662 1.0000000
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.