rlm.test: Robust L1 Moment-Based (RLM) Goodness-of-Fit Test for the...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Robust test for the Laplace distribution. Two options for calculating critical values, namely, approximated with Chi-square distribution and empirical, are available.

Usage

1
rlm.test(x, crit.values = c("chisq.approximation", "empirical"), N = 0)

Arguments

x

a numeric vector of data values.

crit.values

a character string specifying how the critical values should be obtained: approximated by the Chi-square distribution (default) or empirically.

N

number of Monte Carlo simulations for the empirical critical values.

Details

The test is based on a joint statistic using skewness and kurtosis coefficients. In particular, RLM uses the Average Absolute Deviation from the Median (MAAD), a robust estimate of standard deviation. See \insertCiteGel_2010;textuallawstat.

Value

A list of class "htest" with the following components:

statistic

the value of the test statistic.

parameter

the degrees of freedom.

p.value

the p-value of the test.

method

type of test was performed.

data.name

a character string giving the name of the data.

Author(s)

Kimihiro Noguchi, W. Wallace Hui, Yulia R. Gel

References

\insertAllCited

See Also

sj.test, rjb.test, rqq, jarque.bera.test

Examples

1
2
3
## Laplace distributed data
x = rexp(100) - rexp(100)
rlm.test(x)

gel-research-group/lawstat documentation built on Dec. 20, 2021, 9:50 a.m.