| bmm.plot.1d | R Documentation | 
Overlay the posterior predictive density on a histogram of 1D data.
bmm.plot.1d(X, mu, alpha, nu, beta, E.pi, r, title, xlab, ylab)
X | 
 an N x D matrix with rows being the items to cluster. All entries are assumed to be proportions (i.e., between 0 and 1). Notice that there are no summation restrictions–i.e., proportions do not sum to unity across an item's dimensions.  | 
mu | 
 a D x N.c matrix holding the values of the shape parameters for the gamma prior distributions over the u parameters. i.e., mu[d,n] is the shape parameter governing u[d,n]. Introduced in eqn (15).  | 
alpha | 
 a D x N.c matrix holding the values of the rate (i.e., inverse scale) parameters for the gamma prior distributions over the u parameters. i.e., mu[d,n] is the rate parameter governing u[d,n]. Introduced in eqn (15).  | 
nu | 
 a D x N.c matrix holding the values of the shape parameters for the gamma prior distributions over the v parameters. i.e., nu[d,n] is the shape parameter governing v[d,n]. Introduced in eqn (16).  | 
beta | 
 a D x N.c matrix holding the values of the rate (i.e., inverse scale) parameters for the gamma prior distributions over the v parameters. i.e., beta[d,n] is the rate parameter governing v[d,n]. Introduced in eqn (16).  | 
E.pi | 
 the D-vector holding the values E[pi], i.e., the expected values of the mixing coefficients, defined in eqn (53).  | 
r | 
 the N x N.c matrix of responsibilities, with r[n, nc] giving the probability that item n belongs to component nc  | 
title | 
 plot title  | 
xlab | 
 x label  | 
ylab | 
 y label  | 
gplot object overlaying the posterior predictive density on a histogram of the data.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.