Description Usage Arguments Value
Estimate the coefficients and the noise term of an Ornstein-Uhlenbeck process (dX(t) = BX(t) + √{C} dW(t)) using penalized maximum-likelihood.
1 2 3 4 5 6 7 8 9 10 11 | estimateBLL(Sigma, B, C = diag(ncol(Sigma)), eps = 0.01, alpha = 0.2,
beta = 0.5, maxIter = 1000, trace = 0, lambda = 0, r = FALSE,
h = FALSE, pert = FALSE)
estimateCLL(Sigma, B, C = diag(ncol(Sigma)), C0 = diag(ncol(Sigma)),
eps = 0.01, alpha = 0.2, beta = 0.5, maxIter = 1000, trace = 0,
lambda = 0, r = FALSE, t0 = 1)
estimateBF(Sigma, B, C = diag(ncol(Sigma)), C0 = diag(ncol(Sigma)),
eps = 0.01, alpha = 1, maxIter = 1000, trace = 0, lambda = 0.1,
beta = 0.5, r = FALSE, h = FALSE)
|
Sigma |
the empirical covariance matrix |
B |
an initial guess for the coefficient matrix B |
C |
the initial guess for the noise matrix C |
eps |
stopping criteria |
alpha |
parameter backtracking |
beta |
parameter backtracking |
maxIter |
maximum number of iterations |
trace |
if >0 print info |
lambda |
penalization coefficient |
r |
logical the set of parameter will be updated at every iteration |
h |
logical if TRUE only the non-zero entries of B will be updated |
C0 |
penalization matrix |
delt |
stepsize for internal stable approx |
the estimated B matrix (estimateBLL
) or
the estiamted C matrix (estiamteCLL
).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.