genGlasso: generalized graphical lasso

Description Usage Arguments Value

Description

Solve the generalized graphical lasso problem with proximal gradient

Usage

1
2
3
genGlasso(Sigma, P = diag(nrow(Sigma)), G = -diag(nrow(Sigma)),
  lambda = 0.1, maxIter = 1000, eps = 1e-05, alpha = 0.5,
  beta = 0.5, trace = 0)

Arguments

Sigma

the covariance matriz

P

initial precision matrix

G

Matrix in the generlaized penalization

lambda

penalization coefficient

maxIter

maximum number of iterations

eps

threshold for stopping criteria

alpha

param for line search

beta

param for line search

Value

The estimated precision matrix


gherardovarando/crossSectional documentation built on July 7, 2019, 12:44 a.m.