| predict_rgb | R Documentation | 
classify images using raster predict
predict_rgb(
  imageFiles = NULL,
  model = NULL,
  inPrefix = "index_",
  outPrefix = "classified_",
  bandNames = NULL,
  retRaster = TRUE
)
imageFiles | 
 raster*. imagestack for classification purposes must contain the required bands as needed by the model.  | 
model | 
 model. classification model  | 
inPrefix | 
 character. in frefix string  | 
outPrefix | 
 character. out prefix string  | 
bandNames | 
 character. band names  | 
retRaster | 
 boolean if TRUE a raster stack is returned  | 
writes a result image in tif format if retRaster an rasterstack is returned
## Not run: 
##- required packages
require(uavRst)
require(link2GI)
##- project folder
projRootDir<-tempdir()
##-create subfolders pls notice the pathes are exported as global variables
paths<-link2GI::initProj(projRootDir = projRootDir,
                        projFolders = c("data/","data/ref/","output/","run/","las/"),
                        global = TRUE,
                        path_prefix = "path_")
unlink(file.path(tempdir(),"*"), force = TRUE)
##- get the tutorial data
utils::download.file("https://github.com/gisma/gismaData/raw/master/uavRst/data/ffs.zip",
file.path(tempdir(),"ffs.zip"))
unzip(zipfile =  file.path(tempdir(),"ffs.zip"), exdir = tempdir())
##- assign tutorial data
imageFile <- file.path(tempdir(),"predict.tif")
load(file.path(tempdir(),"tutorialbandNames.RData"))
tutorialModel<-readRDS(file = file.path(tempdir(),"tutorialmodel.rds"))
##- start the  prediction taking the non optimized model
##- please note the output is saved in the subdirectory path_output
prediction<-predict_rgb(imageFiles=imageFile,
            model = tutorialModel[[1]],
            bandNames = bandNames)
##- visualise the classification
raster::plot(prediction)
##+
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.