epimethex.analysis: Create a Epimethex function

Description Usage Arguments Value Source Examples

View source: R/EpimethexAnalysis.R

Description

Create a Epimethex function

Usage

1
2
epimethex.analysis(dfExpressions, dfGpl, dfMethylation, minRangeGene,
    maxRangeGene, numCores, dataGenesLinear, testExpression, testMethylation)

Arguments

dfExpressions

data frame, expression of data

dfGpl

data frame, Annotations of data

dfMethylation

data frame, Methylation of data

minRangeGene

Numeric, lowerbound of genes

maxRangeGene

Numeric, upperbound of genes

numCores

Numeric, is the number of cores that you can use

dataGenesLinear

Logic, determines if genetic data are linear

testExpression

Logic, determines the test to apply on expression dataset. If TRUE will apply t-student test, otherwise will apply Kolmogorov-Smirnov test

testMethylation

Logic, determines the test to apply on methylation dataset. If TRUE will apply t-student test, otherwise will apply Kolmogorov-Smirnov test

Value

csv files

Source

Functions

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Annotations <- data.frame(
ID = c("cg11663302","cg01552731", "cg09081385"),
Relation_to_UCSC_CpG_Island = c("Island","N_Shore","N_Shore"),
UCSC_CpG_Islands_Name = c("chr1:18023481-18023792","chr19:46806998-46807617",
"chr12:120972167-120972447"),
UCSC_RefGene_Accession = c("NM_001011722","NM_152794","NM_014868"),
Chromosome_36 = c("1","19","12"),
Coordinate_36 = c("17896255","51498747","119456453"),
UCSC_RefGene_Name = c("ARHGEF10L","HIF3A","RNF10"),
UCSC_RefGene_Group =c("Body","1stExon","TSS200"),
stringsAsFactors=FALSE)

Expressions <- data.frame(
'sample' = c("ARHGEF10L", "HIF3A", "RNF10"),
'TCGA-YD-A89C-06' = c(-0.746592469762, -0.753826336325, 0.4953280),
'TCGA-Z2-AA3V-06' = c(0.578807530238, -2.30662633632, 0.1023280),
'TCGA-EB-A3Y6-01' = c(-0.363492469762, -2.67922633632, -0.6147720),
'TCGA-EE-A3JA-06' = c(-2.97279246976, -3.61932633632, 0.02932801),
'TCGA-D9-A4Z2-01' = c(-0.128492469762, 0.679073663675, 0.4017280),
'TCGA-D3-A51G-06' = c(-0.4299925, -4.0626263, -1.0136720),
stringsAsFactors=FALSE)

Methylation <- data.frame(
'sample' = c("cg11663302", "cg01552731", "cg09081385"),
'TCGA-YD-A89C-06' = c(0.9856, 0.7681, 0.0407),
'TCGA-Z2-AA3V-06' = c(0.9863, 0.8551, 0.0244),
'TCGA-EB-A3Y6-01' = c(0.9876, 0.6473, 0.028),
'TCGA-EE-A3JA-06' = c(0.9826, 0.4587, 0.0343),
'TCGA-D9-A4Z2-01' = c(0.9881, 0.8509, 0.0215),
'TCGA-D3-A51G-06' = c(0.9774, 0.813, 0.0332),
stringsAsFactors=FALSE)

epimethex.analysis(Expressions, Annotations, Methylation, 1, 3, 2,
TRUE, TRUE, FALSE)

giupardeb/EpiMethEx documentation built on May 28, 2019, 5:39 a.m.