DirectLiNGAM: DirectLiNGAM class

Description Super class Methods References

Description

R implementation of direct LiNGAM algorithm

See reference for details of the algorithm

Super class

rlingam::LiNGAM -> DirectLiNGAM

Methods

Public methods

Inherited methods

Method fit()

fit DirectLiNGAM

Usage
DirectLiNGAM$fit(X)
Arguments
X

(numeric matrix or data.frame) data matrix to fit


Method estimate_causal_order()

search causal ordering

Usage
DirectLiNGAM$estimate_causal_order(X)
Arguments
X

(numerical matrix or data.frame) data matrix


Method search_exogenous_variable()

search exogenous variable

Usage
DirectLiNGAM$search_exogenous_variable(X, U)
Arguments
X

(numerical matrix or data.frame) data matrix

U

(numeric vector) index of each columns

Returns

index of estimated exogenous variable


Method residual()

residual when xi is regressed on xj

Usage
DirectLiNGAM$residual(xi, xj)
Arguments
xi

(numeric vector) target variable

xj

(numeric vector) explanatory variable

Returns

resid (numeric vector) calculated residual


Method diff_mutual_info()

calculate the difference of the mutual information

Usage
DirectLiNGAM$diff_mutual_info(xi_std, xj_std, ri_j, rj_i)
Arguments
xi_std

(numeric vector) standardized xi

xj_std

(numeric vector) standardized xj

ri_j

(numeric vector) resid of xi_std regressed on xj_std

rj_i

(numeric vector) resid of xj_std regressed on xi_std

Returns

scalar value of the difference of mutual information


Method entropy()

calculate entropy using maximum entropy approximation

Usage
DirectLiNGAM$entropy(u)
Arguments
u

(numeric vector) vector to calculate entropy

Returns

scalar value of entropy


Method clone()

The objects of this class are cloneable with this method.

Usage
DirectLiNGAM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12(Apr): 1225–1248, 2011.


gkikuchi/rlingam documentation built on Jan. 7, 2022, 11:10 p.m.