Description Super class Methods References
R implementation of direct LiNGAM algorithm
See reference for details of the algorithm
rlingam::LiNGAM -> DirectLiNGAM
fit()fit DirectLiNGAM
DirectLiNGAM$fit(X)
X(numeric matrix or data.frame) data matrix to fit
estimate_causal_order()search causal ordering
DirectLiNGAM$estimate_causal_order(X)
X(numerical matrix or data.frame) data matrix
search_exogenous_variable()search exogenous variable
DirectLiNGAM$search_exogenous_variable(X, U)
X(numerical matrix or data.frame) data matrix
U(numeric vector) index of each columns
index of estimated exogenous variable
residual()residual when xi is regressed on xj
DirectLiNGAM$residual(xi, xj)
xi(numeric vector) target variable
xj(numeric vector) explanatory variable
resid (numeric vector) calculated residual
diff_mutual_info()calculate the difference of the mutual information
DirectLiNGAM$diff_mutual_info(xi_std, xj_std, ri_j, rj_i)
xi_std(numeric vector) standardized xi
xj_std(numeric vector) standardized xj
ri_j(numeric vector) resid of xi_std regressed on xj_std
rj_i(numeric vector) resid of xj_std regressed on xi_std
scalar value of the difference of mutual information
entropy()calculate entropy using maximum entropy approximation
DirectLiNGAM$entropy(u)
u(numeric vector) vector to calculate entropy
scalar value of entropy
clone()The objects of this class are cloneable with this method.
DirectLiNGAM$clone(deep = FALSE)
deepWhether to make a deep clone.
S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12(Apr): 1225–1248, 2011.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.