ICALiNGAM: ICALiNGAM class

Description Super class Public fields Methods References

Description

R implementation of ICA based LiNGAM algorithm See reference for details of the algorithm

Super class

rlingam::LiNGAM -> ICALiNGAM

Public fields

max_iter

(integer) maximum iterations for fastICA

Methods

Public methods

Inherited methods

Method new()

create ICALiNGAM object

Usage
ICALiNGAM$new(random_state = NULL, lasso_engine = "glmnet", max_iter = 1000)
Arguments
random_state

(integer) Random seed

lasso_engine

(character) "lars" or "glmnet"

max_iter

(integer) maximum iterations of fastICA


Method fit()

fit DirectLiNGAM

Usage
ICALiNGAM$fit(X)
Arguments
X

(numeric matrix or data.frame) data matrix to fit Estimate causal order based on estimated adjacency matrix


Method estimate_causal_order()

if B is not DAG, set small elements to zero until DAG is obtained

Usage
ICALiNGAM$estimate_causal_order(B)
Arguments
B

(matrix) estimated adjacency matrix

Returns

integer vector of length(ncol(B)) get causal order of estimated adjacency matrix


Method search_causal_order()

if given matrix is not DAG, return NULL

Usage
ICALiNGAM$search_causal_order(B)
Arguments
B

(matrix) estimated adjacency matrix

Returns

vector of length(ncol(B)) or NULL


Method clone()

The objects of this class are cloneable with this method.

Usage
ICALiNGAM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030, 2006.


gkikuchi/rlingam documentation built on Jan. 7, 2022, 11:10 p.m.