Description Usage Arguments CAUTION
This function is a constructor for the pdInd
class, representing a
positive-definite matrix with zero covariances except possibly in the first
row and column. If the matrix associated with object
is of dimension
$n$, it is represented by $n + (n-1)$ unrestricted parameters representing a
lower-triangular log-Cholesky decomposition. The first $n$ parameters are
the logs of the diagonal elements of the matrix and the last $n-1$
components are the $n-1$ remaining elements of the lower-triangular
decomposition corresponding the to the possibly non-zero covariances in the
first row.
1 2 |
value |
an option initialization value, which can be any of the following ... |
form |
an optional one-sided linear formula specifying the row/column
names for the matrix represented by |
nam |
and optional vector of character strings specifying the
row/column names for the matrix represented by |
data |
and optional data frame i which to evaluate the variables names
in |
cov |
optional position in lower triangle of covariances that are estimated and, thus, possibly non-zero. The default is that the covariances in the first column are estimated and possibly non-zero. |
zero |
optional way of specifying covariances constrained to be equal
to zero. Only the lower triangular portion of the |
cov and zero do not work. Until fixed, pdInd
only creates the
default covariance pattern in which the only non-zero covariances are those with the first element.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.