anova.lme: anova for lme

Usage Arguments Examples

Usage

1
anova.lme(object, ..., test = TRUE, type = c("sequential", "marginal"), adjustSigma = TRUE, Terms, L, verbose = FALSE)

Arguments

object
...
test
type
adjustSigma
Terms
L
verbose

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (object, ..., test = TRUE, type = c("sequential", "marginal"), 
    adjustSigma = TRUE, Terms, L, verbose = FALSE) 
{
    warning("This is a modified version of anova.lme that uses min dfs for the denominator")
    Lmiss <- missing(L)
    dots <- list(...)
    if ((rt <- (length(dots) + 1)) == 1) {
        if (!inherits(object, "lme")) {
            stop("Object must inherit from class \"lme\" ")
        }
        vFix <- attr(object$fixDF, "varFixFact")
        if (object$method == "ML" && adjustSigma == TRUE) {
            vFix <- sqrt(object$dims$N/(object$dims$N - ncol(vFix))) * 
                vFix
        }
        c0 <- solve(t(vFix), fixef(object))
        assign <- attr(object$fixDF, "assign")
        nTerms <- length(assign)
        if (missing(Terms) && Lmiss) {
            type <- match.arg(type)
            Fval <- Pval <- double(nTerms)
            nDF <- integer(nTerms)
            dDF <- object$fixDF$terms
            for (i in 1:nTerms) {
                nDF[i] <- length(assign[[i]])
                if (type == "sequential") {
                  c0i <- c0[assign[[i]]]
                }
                else {
                  c0i <- c(qr.qty(qr(vFix[, assign[[i]], drop = FALSE]), 
                    c0))[1:nDF[i]]
                }
                Fval[i] <- sum(c0i^2)/nDF[i]
                Pval[i] <- 1 - pf(Fval[i], nDF[i], dDF[i])
            }
            aod <- data.frame(nDF, dDF, Fval, Pval)
            dimnames(aod) <- list(names(assign), c("numDF", "denDF", 
                "F-value", "p-value"))
            attr(aod, "rt") <- rt
        }
        else {
            nX <- length(unlist(assign))
            if (Lmiss) {
                if (is.numeric(Terms) && all(Terms == as.integer(Terms))) {
                  if (min(Terms) < 1 || max(Terms) > nTerms) {
                    stop(paste("Terms must be between 1 and", 
                      nTerms))
                  }
                }
                else {
                  if (is.character(Terms)) {
                    if (any(noMatch <- is.na(match(Terms, names(assign))))) {
                      stop(paste("Term(s)", paste(Terms[noMatch], 
                        collapse = ", "), "not matched"))
                    }
                  }
                  else {
                    stop("Terms can only be integers or characters")
                  }
                }
                dDF <- unique(object$fixDF$terms[Terms])
                if (length(dDF) > 1) {
                  warning("Terms do not all have the same denominator DF -- using the minimum")
                  dDF <- min(dDF)
                }
                lab <- paste("F-test for:", paste(names(assign[Terms]), 
                  collapse = ", "), "\n")
                L <- diag(nX)[unlist(assign[Terms]), , drop = FALSE]
            }
            else {
                L <- as.matrix(L)
                if (ncol(L) == 1) 
                  L <- t(L)
                nrowL <- nrow(L)
                ncolL <- ncol(L)
                if (ncol(L) > nX) {
                  stop(paste("L must have at most", nX, "columns"))
                }
                dmsL1 <- rownames(L)
                L0 <- array(0, c(nrowL, nX), list(NULL, names(object$fixDF$X)))
                if (is.null(dmsL2 <- colnames(L))) {
                  L0[, 1:ncolL] <- L
                }
                else {
                  if (any(noMatch <- is.na(match(dmsL2, colnames(L0))))) {
                    stop(paste("Effects", paste(dmsL2[noMatch], 
                      collapse = ", "), "not matched"))
                  }
                  L0[, dmsL2] <- L
                }
                L <- L0[noZeroRowL <- as.logical((L0 != 0) %*% 
                  rep(1, nX)), , drop = FALSE]
                nrowL <- nrow(L)
                if (is.null(dmsL1)) {
                  dmsL1 <- 1:nrowL
                }
                else {
                  dmsL1 <- dmsL1[noZeroRowL]
                }
                rownames(L) <- dmsL1
                dDF <- unique(object$fixDF$X[noZeroColL <- as.logical(c(rep(1, 
                  nrowL) %*% (L != 0)))])
                if (length(dDF) > 1) {
                  warn <- paste("L involves fixed effects with the different denominator DF:", 
                    paste(dDF, collapse = " "), collapse = " ")
                  warning(warn)
                  dDF <- min(dDF)
                }
                lab <- "F-test for linear combination(s)\n"
            }
            nDF <- sum(svd(L)$d > 0)
            c0 <- c(qr.qty(qr(vFix %*% t(L)), c0))[1:nDF]
            Fval <- sum(c0^2)/nDF
            Pval <- 1 - pf(Fval, nDF, dDF)
            aod <- data.frame(nDF, dDF, Fval, Pval)
            names(aod) <- c("numDF", "denDF", "F-value", "p-value")
            attr(aod, "rt") <- rt
            attr(aod, "label") <- lab
            if (!Lmiss) {
                if (nrow(L) > 1) 
                  attr(aod, "L") <- L[, noZeroColL, drop = FALSE]
                else attr(aod, "L") <- L[, noZeroColL]
            }
        }
    }
    else {
        ancall <- sys.call()
        ancall$verbose <- ancall$test <- NULL
        object <- list(object, ...)
        termsClass <- unlist(lapply(object, data.class))
        if (!all(match(termsClass, c("gls", "gnls", "lm", "lmList", 
            "lme", "nlme", "nlsList", "nls"), 0))) {
            stop(paste("Objects must inherit from classes \"gls\", \"gnls\"", 
                "\"lm\",\"lmList\", \"lme\",\"nlme\",\"nlsList\", or \"nls\""))
        }
        resp <- unlist(lapply(object, function(el) deparse(getResponseFormula(el)[[2]])))
        subs <- as.logical(match(resp, resp[1], FALSE))
        if (!all(subs)) 
            warning(paste("Some fitted objects deleted because", 
                "response differs from the first model"))
        if (sum(subs) == 1) 
            stop("First model has a different response from the rest")
        object <- object[subs]
        rt <- length(object)
        termsModel <- lapply(object, function(el) formula(el)[-2])
        estMeth <- unlist(lapply(object, function(el) {
            val <- el[["method"]]
            if (is.null(val)) 
                val <- NA
            val
        }))
        if (length(uEst <- unique(estMeth[!is.na(estMeth)])) > 
            1) {
            stop("All fitted objects must have the same estimation method.")
        }
        estMeth[is.na(estMeth)] <- uEst
        REML <- uEst == "REML"
        if (REML) {
            aux <- unlist(lapply(termsModel, function(el) {
                aux <- terms(el)
                val <- paste(sort(attr(aux, "term.labels")), 
                  collapse = "&")
                if (attr(aux, "intercept") == 1) {
                  val <- paste(val, "(Intercept)", sep = "&")
                }
                val
            }))
            if (length(unique(aux)) > 1) {
                warning(paste("Fitted objects with different fixed effects.", 
                  "REML comparisons are not meaningful."))
            }
        }
        termsCall <- lapply(object, function(el) {
            if (is.null(val <- el$call)) {
                if (is.null(val <- attr(el, "call"))) {
                  stop("Objects must have a \"call\" component or attribute.")
                }
            }
            val
        })
        termsCall <- unlist(lapply(termsCall, function(el) paste(deparse(el), 
            collapse = "")))
        aux <- lapply(object, logLik, REML)
        if (length(unique(unlist(lapply(aux, function(el) attr(el, 
            "nall"))))) > 1) {
            stop("All fitted objects must use the same number of observations")
        }
        dfModel <- unlist(lapply(aux, function(el) attr(el, "df")))
        logLik <- unlist(lapply(aux, function(el) c(el)))
        AIC <- unlist(lapply(aux, AIC))
        BIC <- unlist(lapply(aux, BIC))
        aod <- data.frame(call = termsCall, Model = (1:rt), df = dfModel, 
            AIC = AIC, BIC = BIC, logLik = logLik, check.names = FALSE)
        if (test) {
            ddf <- diff(dfModel)
            if (sum(abs(ddf)) > 0) {
                effects <- rep("", rt)
                for (i in 2:rt) {
                  if (ddf[i - 1] != 0) {
                    effects[i] <- paste(i - 1, i, sep = " vs ")
                  }
                }
                pval <- rep(NA, rt - 1)
                ldf <- as.logical(ddf)
                lratio <- 2 * abs(diff(logLik))
                lratio[!ldf] <- NA
                pval[ldf] <- 1 - pchisq(lratio[ldf], abs(ddf[ldf]))
                aod <- data.frame(aod, Test = effects, L.Ratio = c(NA, 
                  lratio), `p-value` = c(NA, pval), check.names = FALSE)
            }
        }
        row.names(aod) <- unlist(lapply(as.list(ancall[-1]), 
            deparse))
        attr(aod, "rt") <- rt
        attr(aod, "verbose") <- verbose
    }
    class(aod) <- c("anova.lme", "data.frame")
    aod
  }

gmonette/spida15 documentation built on May 17, 2019, 7:26 a.m.