Recharge

Recharge in a given direction is calculated most straightforward through Darcy's law, where z is the thickness of the aquifer.

For a confined aquifer, this looks like:

\begin{align} z_0 q_x = Q_x &= - K_{sat} z_0 \frac{\partial h}{\partial x} \ \frac{\partial h}{\partial x} &= -\frac{Q_x}{ K_{sat} z_0} \ 2 z_0 \frac{\partial h}{\partial x} &= -\frac{2 Q_x}{ K_{sat}} \end{align}

For an unconfined aquifer, this looks like:

\begin{align} h q_x = Q_x &= - K_{sat} h \frac{\partial h}{\partial x} = - \frac{K_{sat}}{2} \frac{\partial h^2}{\partial x} \ \frac{\partial \phi}{\partial x} = \frac{\partial h^2}{\partial x} &= -\frac{2 Q_x}{K_{sat}} \end{align}

Wells

This is a proof showing the derivative of hydraulic head, where $r = \sqrt{(x-x_i)^2+(y-y_i)^2}$.

Hydraulic head near a well.

\begin{align} h - h_0 &= -\frac{Q}{2 \pi T} \log \left( \frac{r}{R} \right) \end{align}

Hydraulic head gradient near a well.

\begin{align} \frac{\partial h}{\partial x} &= \frac{\partial}{\partial x} \left[ -\frac{Q}{2 \pi T} \log \left( \frac{r}{R} \right) \right] \ &= -\frac{Q}{2 \pi T} \frac{\partial}{\partial x} \left[ \log r - \log R \right] \ &= -\frac{Q}{2 \pi T} \frac{\partial}{\partial x} \left[ \log \left( \sqrt{(x-x_i)^2+(y-y_i)^2} \right) \right] \ &= -\frac{Q}{2 \pi T} \frac{1}{ \sqrt{(x-x_i)^2+(y-y_i)^2}} \frac{\partial}{\partial x} \left[ \sqrt{(x-x_i)^2+(y-y_i)^2} \right] \ &= -\frac{Q}{2 \pi T} \frac{1}{ \sqrt{(x-x_i)^2+(y-y_i)^2}} \frac{x-x_i}{\sqrt{(x-x_i)^2+(y-y_i)^2}} \ &= -\frac{Q}{2 \pi T} \frac{x-x_i}{r^2} \end{align}

Discharge potential near a well.

\begin{align} \phi - \phi_0 &= -\frac{Q}{\pi K_{sat}} \log \left( \frac{r}{R} \right) \end{align}

Discharge potential gradient near a well.

\begin{align} \frac{\partial \phi}{\partial x} &= \frac{\partial}{\partial x} \left[ -\frac{Q}{\pi K_{sat}} \log \left( \frac{r}{R} \right) \right] \ &= -\frac{Q}{\pi K_{sat}} \frac{\partial}{\partial x} \left[ \log r - \log R \right] \ &= -\frac{Q}{\pi K_{sat}} \frac{\partial}{\partial x} \left[ \log \left( \sqrt{(x-x_i)^2+(y-y_i)^2} \right) \right] \ &= -\frac{Q}{\pi K_{sat}} \frac{x-x_i}{(x-x_i)^2+(y-y_i)^2} \ \frac{\partial \phi}{\partial x} &= -\frac{Q}{\pi K_{sat}} \frac{x-x_i}{r^2}, \frac{\partial \phi}{\partial y} = -\frac{Q}{\pi K_{sat}} \frac{y-y_i}{r^2} \end{align}

So, in order to calculate the flow direction for each well, we calculate:

\begin{align} 2 z_0 \frac{\partial h}{\partial x} &= \frac{\partial \phi}{\partial x} = -\frac{Q}{\pi K_{sat}} \frac{x-x_i}{r^2} = f_x' \ 2 z_0 \frac{\partial h}{\partial y} &= \frac{\partial \phi}{\partial y} = -\frac{Q}{\pi K_{sat}} \frac{y-y_i}{r^2} = f_y' \ \end{align}

Then, to get the gradient of hydraulic head for confined aquifers:

\begin{align} \frac{\partial h}{\partial x} &= \frac{f_x'}{2 z_0} \ \frac{\partial h}{\partial y} &= \frac{f_y'}{2 z_0} \end{align}

And for unconfined aquifers, remember $\partial \phi/\partial x = 2 h \partial h / \partial x$.

\begin{align} \frac{\partial h}{\partial x} &= \frac{f_x'}{2 h} \ \frac{\partial h}{\partial y} &= \frac{f_y'}{2 h} \end{align}

Time integration for a particle and single well in confined aquifer

Assume the particle begins at $(x,y,t)=(x_0,0,0)$ and moving away from an injection well located at $(x,y)=(x_i,0)$.

$$\frac{dh}{dx} = -\frac{Q}{2 \pi k z_0} \frac{1}{x-x_i}$$

The velocity of a particle is (remember $Q>0$ represents an injection well)

\begin{align} v &= \frac{q}{n} \ &= -\frac{1}{n} k \frac{dh}{dx} \ &= \frac{1}{n} k \frac{Q}{2 \pi k z_0} \frac{1}{x-x_i} \end{align}

\begin{align} x(t+\Delta t) &= x(t) + v(x,t)\Delta t \ \lim_{\Delta t \to 0}\frac{x(t+\Delta t) - x(t)}{\Delta(t)} &= \lim_{\Delta t \to 0} v(x,t) \ \frac{dx}{dt} &= v(x,t) = \frac{Q}{2 \pi n z_0} \frac{1}{x-x_i} \ \int_{x_0}^x (x-x_i) dx &= \int_0^t \frac{Q}{2 \pi n z_0} dt \ \frac{x^2}{2}-x_ix \,\big\rvert_{x_0}^x &= \frac{Q}{2 \pi n z_0} t \,\big\rvert_{0}^t \ \frac{1}{2}(x^2-x_0^2)-x_i(x-x_0) &= \frac{Q}{2 \pi n z_0} t \end{align}

Assuming $x_i=0$, we get:

\begin{align} x^2 &= \frac{Q}{\pi n z_0} t + x_0^2 \ x &= \sqrt{\frac{Qt}{\pi n z_0} + x_0^2} \end{align}

library(anem)
library(magrittr)
library(ggplot2)
wells <- data.frame(x=0,y=0,Q=1,diam=1,R=1000) %>% define_wells()
bounds_df <- data.frame(bound_type=rep("PB",4),m=c(Inf,0,Inf,0),b=c(-100,500,1000,-500))
aquifer <- define_aquifer(Ksat=1,n=0.3,z0=10,h0=0,aquifer_type="confined",bounds=bounds_df)
x0 <- 10
particle <- track_particles(c(x0,0),wells,aquifer,step_dist=2,grid_length = 500) %>% dplyr::rename(x_num=x)
particle <- particle %>% 
  dplyr::mutate(x_eqn=sqrt(wells$Q*time_days*3600*24/(pi*aquifer$n*aquifer$z0)+x0^2),
                pct_diff=(x_num-x_eqn)/x_eqn * 100)

particle %>% dplyr::filter(x_num<1000) %>% 
  tidyr::gather(var,x,x_num,x_eqn,pct_diff) %>% 
ggplot() + 
  geom_line(aes(time_days,x,color=var,linetype=var),size=1.5) + facet_wrap(~type,ncol=1,scales="free_y")


x0 <- 10
particle2 <- track_particles(c(x0,0),wells,aquifer,step_dist=20,grid_length = 100) %>% dplyr::rename(x_num=x)
particle2 <- particle2%>% 
  dplyr::mutate(x_eqn=sqrt(wells$Q*time_days*3600*24/(pi*aquifer$n*aquifer$z0)+x0^2),
                pct_diff=(x_num-x_eqn)/x_eqn * 100)

particle2 %>% 
  dplyr::filter(x_num<1000) %>% 
  tidyr::gather(var,x,x_num,x_eqn,pct_diff) %>% 
  dplyr::mutate(type=ifelse(grepl("x",var),"x","pct_diff")) %>%
ggplot() + 
  geom_line(aes(time_days,x,color=var,linetype=var),size=1) + facet_wrap(~type,ncol=1,scales="free_y")

Time integration for a particle and single well in unconfined aquifer

Assume the particle begins at $(x,y,t)=(x_0,0,0)$ and moving away from an injection well located at $(x,y)=(0,0)$.

\begin{align} h^2 - h_0^2 &= -\frac{Q}{\pi k} \log \left( \frac{x}{R} \right) \ h &= \sqrt{-\frac{Q}{\pi k} \log \left( \frac{x}{R} \right) + h_0^2} \end{align}

$$\frac{dh}{dx} = -\frac{Q}{2 \pi k x \sqrt{h_0^2-\frac{Q \log \left(\frac{x}{R}\right)}{\pi k}}}$$

The velocity of a particle is (remember $Q>0$ represents an injection well)

\begin{align} v &= \frac{q}{n} \ &= -\frac{1}{n} k \frac{dh}{dx} \ &= \frac{Q}{2 \pi n x \sqrt{h_0^2-\frac{Q \log \left(\frac{x}{R}\right)}{\pi k}}} \end{align}

\begin{align} x(t+\Delta t) &= x(t) + v(x,t)\Delta t \ \lim_{\Delta t \to 0}\frac{x(t+\Delta t) - x(t)}{\Delta(t)} &= \lim_{\Delta t \to 0} v(x,t) \ \frac{dx}{dt} &= v(x,t) = \frac{Q}{2 \pi n x \sqrt{h_0^2-\frac{Q \log \left(\frac{x}{R}\right)}{\pi k}}} \ \int_{x_0}^x x \sqrt{h_0^2-\frac{Q \log \left(\frac{x}{R}\right)}{\pi k}} dx &= \int_0^t \frac{Q}{2 \pi n} dt \end{align}

This integral is a bit too gnarly. I tried in Mathematica and got some complicated results.



gopalpenny/anem documentation built on Dec. 20, 2020, 5:27 a.m.