## code to prepare `pod` dataset goes here
library(tidyverse)
library(tidyselect)
library(lubridate)
path = file.path("inst", "extdata", "Denfinal")
inc_pv_cond = F
# file names have different integers at end depending on batch release
files <- list.files(path)
files <- c("demand", "weather", "pv") %>%
set_names() %>%
map(~ files[grep(., files)])
demand_df <- read_csv(
file.path(path, files$demand),
col_types = cols(
datetime = col_datetime(),
demand_MW = col_double()
)
) %>%
rename(
demand_mw = demand_MW
)
weather_df <- read_csv(
file.path(path, files$weather),
col_types = cols(
datetime = col_datetime(),
temp_location3 = col_double(),
humidity = col_double()
)
)
#select(datetime,
# matches(paste0("[", paste0(locations, collapse=""), "]{1}$")))
pv_df <- read_csv(
file.path(path, files$pv),
col_types = cols(
datetime = col_datetime(format = ""),
`irradiance_Wm-2` = col_double(),
pv_power_mw = col_double(),
panel_temp_C = col_double()
)
) %>%
rename(
irradiance_wm2 = `irradiance_Wm-2`,
panel_temp_c = panel_temp_C
)
if (!inc_pv_cond) pv_df <- select(pv_df, datetime, pv_power_mw)
pod <- demand_df %>%
full_join(pv_df, by = "datetime") %>%
full_join(weather_df, by = "datetime") %>%
arrange(datetime) %>%
filter(datetime >= min(demand_df$datetime)) %>% # remove pre-demand data
select(datetime, sort(peek_vars()))
usethis::use_data(pod, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.