| aenetgt-package | Adaptive Elastic Net for Group Testing Data |
| aic.bic.eric.enetgt.grid | Chooses tuning parameters via AIC, BIC, and ERIC. |
| all_binary_sequences | Generate all possible sequences of 0s and 1s of a given... |
| array.assay.gen | Generates array testing data. |
| CovYiYj.approx | Approximates the conditional covariance between all pairs of... |
| cv.enetgt.grid | Peforms crossvalidation to select a combination of tuning... |
| dorfman.assay.gen | Generates Dorfman testing data. |
| enetgt | Computes the elastic net estimator with weighted l1 norm on... |
| enetgt.grid | Computes the elastic net estimators with weighted l1 norm on... |
| EYapprox | Approximates the conditional expectations of individual... |
| EYexact | Computes conditional expectations of individual disease... |
| EYexact_R | Computes conditional expectations of individual disease... |
| get.array.cv.fold.data | Splits array testing data into crossvalidation data sets. |
| get.dorfman.cv.fold.data | Splits Dorfman testing data into crossvalidation data sets. |
| get.individual.cv.fold.data | Splits individual testing data into crossvalidation data... |
| get.masterpool.cv.fold.data | Splits masterpool testing data into crossvalidation data sets |
| individual.assay.gen | Generates individual testing data. |
| logistic_enet | Compute the elastic net estimator for logistic regression |
| logit | Compute probabilities based on the logit link. |
| masterpool.assay.gen | Generates master pool testing data. |
| mlegt | Computes the mle on group testing data. |
| model0 | Generates data from model0. |
| model1 | Generates data from model1. |
| model2 | Generates data from model2. |
| model3 | Generates data from model3. |
| pull.diagnoses | Pulls individual diagnoses from group testing data if... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.