mlegt | R Documentation |
Computes the mle on group testing data.
mlegt( X, Y, Z, Se, Sp, binit = NULL, tol = 1e-04, E.approx = FALSE, get.SEs = FALSE )
X |
Design matrix with first column a column of 1s. |
Y |
Group testing output from one of the functions |
Z |
Group testing output from one of the functions |
Se |
A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
Sp |
A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
binit |
Parameter value at which to initialize the EM-algorithm. The default is |
tol |
Convergence criterion. |
E.approx |
Logical. If |
get.SEs |
Logical. If |
The maximum likelihood estimator.
This function implements an EM-algorithm to find the maximum likelihood estimator based on the observed data X
, Y
, Z
, and the sensitivities and specificities in Se
, Sp
.
# generate individual covariate values and disease statuses N <- 5000 data <- model0(N) X <- data$X Y.true <- data$Yi Se <- c(.95,.92) # set master pool and individual assay sensitivity Sp <- c(.97,.98) # set master pool and individual assay specificity cj <- 4 # set size of master pools # subject individuals to dorfman testing assay.data <- dorfman.assay.gen(Y.true,Se,Sp,cj) Z <- assay.data$Z Y <- assay.data$Y mlegt.out <- mlegt(X, Y, Z, Se, Sp, tol = .01) # compute mle
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.