| mlegt | R Documentation | 
Computes the mle on group testing data.
mlegt( X, Y, Z, Se, Sp, binit = NULL, tol = 1e-04, E.approx = FALSE, get.SEs = FALSE )
X | 
 Design matrix with first column a column of 1s.  | 
Y | 
 Group testing output from one of the functions   | 
Z | 
 Group testing output from one of the functions   | 
Se | 
 A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable.  | 
Sp | 
 A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable.  | 
binit | 
 Parameter value at which to initialize the EM-algorithm. The default is   | 
tol | 
 Convergence criterion.  | 
E.approx | 
 Logical.  If   | 
get.SEs | 
 Logical.  If   | 
The maximum likelihood estimator.
This function implements an EM-algorithm to find the maximum likelihood estimator based on the observed data X, Y, Z, and the sensitivities and specificities in Se, Sp.
# generate individual covariate values and disease statuses N <- 5000 data <- model0(N) X <- data$X Y.true <- data$Yi Se <- c(.95,.92) # set master pool and individual assay sensitivity Sp <- c(.97,.98) # set master pool and individual assay specificity cj <- 4 # set size of master pools # subject individuals to dorfman testing assay.data <- dorfman.assay.gen(Y.true,Se,Sp,cj) Z <- assay.data$Z Y <- assay.data$Y mlegt.out <- mlegt(X, Y, Z, Se, Sp, tol = .01) # compute mle
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.