Description Usage Arguments Value
Check if a scClassifR object is valid
Filter cells from ambiguous chars and
non applicable cells in a Seurat
object
Filter cells from ambiguous chars and non applicable cells
in a SingleCellExperiment
object
Construct a uniform tag vector for all forms of labels
in a Seurat
object
Construct a uniform tag vector for all forms of labels
in a SingleCellExperiment
object
Process parent classifier in a Seurat
object
Process parent classifier in
a SingleCellExperiment
object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | checkObjectValidity(object)
checkCellTypeValidity(cell_type)
checkFeaturesValidity(features)
checkParentValidity(parent)
checkPThresValidity(p_thres)
checkClassifierValidity(clf)
parent(classifier) <- value
clf(classifier) <- value
features(classifier) <- value
balance_dataset(mat, tag)
train_func(mat, tag)
transform_to_zscore(mat)
load_models(path_to_models)
select_features(mat, features)
check_parent_child_coherence(
obj,
pos_parent,
parent_cell,
cell_type,
target_cell_type,
...
)
filter_cells(obj, tag_slot)
## S4 method for signature 'Seurat'
filter_cells(obj, tag_slot)
## S4 method for signature 'SingleCellExperiment'
filter_cells(obj, tag_slot)
construct_tag_vect(obj, cell_type, ...)
## S4 method for signature 'Seurat'
construct_tag_vect(obj, cell_type, tag_slot)
## S4 method for signature 'SingleCellExperiment'
construct_tag_vect(obj, cell_type, tag_slot)
process_parent_clf(
obj,
parent_tag_slot,
parent_cell_type,
parent_clf,
path_to_models,
zscore = TRUE,
...
)
## S4 method for signature 'Seurat'
process_parent_clf(
obj,
parent_tag_slot,
parent_cell_type,
parent_clf,
path_to_models,
zscore = TRUE,
seurat_assay,
seurat_slot,
...
)
## S4 method for signature 'SingleCellExperiment'
process_parent_clf(
obj,
parent_tag_slot,
parent_cell_type,
parent_clf,
path_to_models,
zscore = TRUE,
sce_assay,
...
)
make_prediction(mat, classifier, pred_cells, ignore_ambiguous_result = TRUE)
simplify_prediction(meta.data, full_pred, classifiers)
verify_parent(mat, classifier, meta.data)
test_performance(mat, classifier, tag)
classify_clust(clusts, most_probable_cell_type)
|
object |
The request classifier to check. |
cell_type |
name of cell type |
features |
list of selected features |
parent |
Classifier parent to check. |
p_thres |
Classifier probability threshold to check. |
clf |
Classifier to check. |
classifier |
classifier |
value |
the new classifier |
mat |
expression matrix |
tag |
tag of data |
path_to_models |
path to databases, or by default |
obj |
object |
pos_parent |
a vector indicating parent clf prediction |
parent_cell |
name of parent cell type |
target_cell_type |
alternative cell types (in case of testing clf) |
... |
arguments passed to other methods |
tag_slot |
tag slot in |
parent_tag_slot |
string, name of annotation tag slot in object indicating pre-assigned/predicted parent cell type |
parent_cell_type |
name of parent cell type |
parent_clf |
|
zscore |
boolean indicating the transformation of gene expression in object to zscore or not |
seurat_assay |
name of assay to use in |
seurat_slot |
type of expression data to use in
|
sce_assay |
name of assay to use
in |
pred_cells |
a whole prediction for all cells |
ignore_ambiguous_result |
whether ignore ambigouous result |
meta.data |
object meta data |
full_pred |
full prediction |
classifiers |
classifiers |
clusts |
cluster info |
most_probable_cell_type |
predicted cell type |
TRUE if the classifier is valid or the reason why it is not
TRUE if the cell type is valid or the reason why it is not.
TRUE if the features is valid or the reason why it is not.
TRUE if the parent is valid or the reason why it is not.
TRUE if the p_thres is valid or the reason why it is not.
TRUE if the classifier is valid or the reason why it is not.
scClassifR object with the new parent.
scClassifR object with the new trained classifier.
scClassifR object with the new features.
a list of balanced count matrix and corresponding tags of balanced count matrix
the classification model (caret object)
row wise center-scaled count matrix
list of classifiers
filtered matrix
list of adjusted object and adjusted tag slot
adjusted Seurat
object
adjusted SingleCellExperiment
object
a binary vector for cell tag
list of cells which are positive to parent clf
prediction
simplified prediction
applicable matrix
clf performance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.