Description Usage Arguments Value See Also
The following tuners are available:
Grid search. All kinds of parameter types can be handled.
You can either use their correct param type and resolution,
or discretize them yourself by always using makeDiscreteParam
in the par.set passed to tuneParams.
Random search. All kinds of parameter types can be handled.
Evolutionary method nsga2.
Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies.
For integers the internally proposed numeric values are automatically rounded.
Model-based/ Bayesian optimization. All kinds of parameter types can be handled.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | makeTuneMultiCritControlGrid(same.resampling.instance = TRUE,
resolution = 10L, log.fun = "default", final.dw.perc = NULL,
budget = NULL)
makeTuneMultiCritControlMBO(n.objectives = mbo.control$n.objectives,
same.resampling.instance = TRUE, impute.val = NULL, learner = NULL,
mbo.control = NULL, tune.threshold = FALSE,
tune.threshold.args = list(), continue = FALSE, log.fun = "default",
final.dw.perc = NULL, budget = NULL, mbo.design = NULL)
makeTuneMultiCritControlNSGA2(same.resampling.instance = TRUE,
impute.val = NULL, log.fun = "default", final.dw.perc = NULL,
budget = NULL, ...)
makeTuneMultiCritControlRandom(same.resampling.instance = TRUE,
maxit = 100L, log.fun = "default", final.dw.perc = NULL,
budget = NULL)
|
same.resampling.instance |
[ |
resolution |
[ |
log.fun |
[ |
final.dw.perc |
[ |
budget |
[ |
n.objectives |
[ |
impute.val |
[ |
learner |
[ |
mbo.control |
[ |
tune.threshold |
[ |
tune.threshold.args |
[ |
continue |
[ |
mbo.design |
[ |
... |
[any] |
maxit |
[ |
[TuneMultiCritControl]. The specific subclass is one of
TuneMultiCritControlGrid, TuneMultiCritControlRandom,
TuneMultiCritControlNSGA2, TuneMultiCritControlMBO.
Other tune_multicrit: plotTuneMultiCritResultGGVIS,
plotTuneMultiCritResult,
tuneParamsMultiCrit
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.